Exploitation of Linkage Learning in Evolutionary Algorithms

One major branch of enhancing the performance of evolutionary algorithms is the exploitation of linkage learning. This monograph aims to capture the recent progress of linkage learning, by compiling a series of focused technical chapters to keep abreast of the developments and trends in the area of...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Chen, Ying-ping (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Σειρά:Evolutionary Learning and Optimization, 3
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Linkage and Problem Structures
  • Linkage Structure and Genetic Evolutionary Algorithms
  • Fragment as a Small Evidence of the Building Blocks Existence
  • Structure Learning and Optimisation in a Markov Network Based Estimation of Distribution Algorithm
  • DEUM – A Fully Multivariate EDA Based on Markov Networks
  • Model Building and Exploiting
  • Pairwise Interactions Induced Probabilistic Model Building
  • ClusterMI: Building Probabilistic Models Using Hierarchical Clustering and Mutual Information
  • Estimation of Distribution Algorithm Based on Copula Theory
  • Analyzing the k Most Probable Solutions in EDAs Based on Bayesian Networks
  • Applications
  • Protein Structure Prediction Based on HP Model Using an Improved Hybrid EDA
  • Sensible Initialization of a Computational Evolution System Using Expert Knowledge for Epistasis Analysis in Human Genetics
  • Estimating Optimal Stopping Rules in the Multiple Best Choice Problem with Minimal Summarized Rank via the Cross-Entropy Method.