Music Recommendation and Discovery The Long Tail, Long Fail, and Long Play in the Digital Music Space /

With so much more music available these days, traditional ways of finding music have diminished. Today radio shows are often programmed by large corporations that create playlists drawn from a limited pool of tracks. Similarly, record stores have been replaced by big-box retailers that have ever-shr...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Celma, Òscar (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03439nam a22004935i 4500
001 978-3-642-13287-2
003 DE-He213
005 20151125193627.0
007 cr nn 008mamaa
008 100907s2010 gw | s |||| 0|eng d
020 |a 9783642132872  |9 978-3-642-13287-2 
024 7 |a 10.1007/978-3-642-13287-2  |2 doi 
040 |d GrThAP 
050 4 |a QA75.5-76.95 
072 7 |a UNH  |2 bicssc 
072 7 |a UND  |2 bicssc 
072 7 |a COM030000  |2 bisacsh 
082 0 4 |a 025.04  |2 23 
100 1 |a Celma, Òscar.  |e author. 
245 1 0 |a Music Recommendation and Discovery  |h [electronic resource] :  |b The Long Tail, Long Fail, and Long Play in the Digital Music Space /  |c by Òscar Celma. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 |a XVI, 194 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a The Recommendation Problem -- Music Recommendation -- The Long Tail in Recommender Systems -- Evaluation Metrics -- Network-Centric Evaluation -- User-Centric Evaluation -- Applications -- Conclusions and Further Research. 
520 |a With so much more music available these days, traditional ways of finding music have diminished. Today radio shows are often programmed by large corporations that create playlists drawn from a limited pool of tracks. Similarly, record stores have been replaced by big-box retailers that have ever-shrinking music departments. Instead of relying on DJs, record-store clerks or their friends for music recommendations, listeners are turning to machines to guide them to new music. In this book, Òscar Celma guides us through the world of automatic music recommendation. He describes how music recommenders work, explores some of the limitations seen in current recommenders, offers techniques for evaluating the effectiveness of music recommendations and demonstrates how to build effective recommenders by offering two real-world recommender examples. He emphasizes the user's perceived quality, rather than the system's predictive accuracy when providing recommendations, thus allowing users to discover new music by exploiting the long tail of popularity and promoting novel and relevant material ("non-obvious recommendations"). In order to reach out into the long tail, he needs to weave techniques from complex network analysis and music information retrieval. Aimed at final-year-undergraduate and graduate students working on recommender systems or music information retrieval, this book presents the state of the art of all the different techniques used to recommend items, focusing on the music domain as the underlying application. 
650 0 |a Computer science. 
650 0 |a Music. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Information storage and retrieval. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Discrete Mathematics in Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Music. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642132865 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-13287-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)