The Use of Ultraproducts in Commutative Algebra

In spite of some recent applications of ultraproducts in algebra, they remain largely unknown to commutative algebraists, in part because they do not preserve basic properties such as Noetherianity. This work wants to make a strong case against these prejudices. More precisely, it studies ultraprodu...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Schoutens, Hans (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Σειρά:Lecture Notes in Mathematics, 1999
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02806nam a22004815i 4500
001 978-3-642-13368-8
003 DE-He213
005 20151123145047.0
007 cr nn 008mamaa
008 100716s2010 gw | s |||| 0|eng d
020 |a 9783642133688  |9 978-3-642-13368-8 
024 7 |a 10.1007/978-3-642-13368-8  |2 doi 
040 |d GrThAP 
050 4 |a QA251.3 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.44  |2 23 
100 1 |a Schoutens, Hans.  |e author. 
245 1 4 |a The Use of Ultraproducts in Commutative Algebra  |h [electronic resource] /  |c by Hans Schoutens. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 |a X, 210 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1999 
505 0 |a Ultraproducts and ?o?’ Theorem -- Flatness -- Uniform Bounds -- Tight Closure in Positive Characteristic -- Tight Closure in Characteristic Zero. Affine Case -- Tight Closure in Characteristic Zero. Local Case -- Cataproducts -- Protoproducts -- Asymptotic Homological Conjectures in Mixed Characteristic. 
520 |a In spite of some recent applications of ultraproducts in algebra, they remain largely unknown to commutative algebraists, in part because they do not preserve basic properties such as Noetherianity. This work wants to make a strong case against these prejudices. More precisely, it studies ultraproducts of Noetherian local rings from a purely algebraic perspective, as well as how they can be used to transfer results between the positive and zero characteristics, to derive uniform bounds, to define tight closure in characteristic zero, and to prove asymptotic versions of homological conjectures in mixed characteristic. Some of these results are obtained using variants called chromatic products, which are often even Noetherian. This book, neither assuming nor using any logical formalism, is intended for algebraists and geometers, in the hope of popularizing ultraproducts and their applications in algebra. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 1 4 |a Mathematics. 
650 2 4 |a Commutative Rings and Algebras. 
650 2 4 |a Algebraic Geometry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642133671 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 1999 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-13368-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)