Computational Space Flight Mechanics

The mechanics of space flight is an old discipline. Its topic originally was the motion of planets, moons and other celestial bodies in gravitational fields. Kepler's (1571 - 1630) observations and measurements have led to probably the first mathematical description of planet's motion. New...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Weiland, Claus (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04186nam a22005415i 4500
001 978-3-642-13583-5
003 DE-He213
005 20151204151459.0
007 cr nn 008mamaa
008 100629s2010 gw | s |||| 0|eng d
020 |a 9783642135835  |9 978-3-642-13583-5 
024 7 |a 10.1007/978-3-642-13583-5  |2 doi 
040 |d GrThAP 
050 4 |a TL787-4050.22 
072 7 |a TRP  |2 bicssc 
072 7 |a TTDS  |2 bicssc 
072 7 |a TEC002000  |2 bisacsh 
082 0 4 |a 629.1  |2 23 
100 1 |a Weiland, Claus.  |e author. 
245 1 0 |a Computational Space Flight Mechanics  |h [electronic resource] /  |c by Claus Weiland. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 |a XIV, 300 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Coordinate Transformations -- Transformations between Often Used Coordinate Systems -- Kepler’s Laws of Planetary Motion and Newton’s Celestial Mechanics -- The Two-Body Problem -- General Equations for Planetary Flight -- A Resumé of the Aerothermodynamics of Space Flight Vehicles -- Three and Six Degree of Freedom Trajectory Simulations -- Numerical Applications of the General Equations for Planetary Flight -- The Earth Atmosphere -- Solution of Problems -- Our Planetary System -- FORTRAN Codes -- MATLAB Codes -- Constants, Relations, Units and Conversions. 
520 |a The mechanics of space flight is an old discipline. Its topic originally was the motion of planets, moons and other celestial bodies in gravitational fields. Kepler's (1571 - 1630) observations and measurements have led to probably the first mathematical description of planet's motion. Newton (1642 - 1727) gave then, with the development of his principles of mechanics, the physical explanation of these motions. Since then man has started in the second half of the 20th century to capture physically the Space in the sense that he did develop artificial celestial bodies, which he brought into Earth's orbits, like satellites or space stations, or which he did send to planets or moons of our planetary system, like probes, or by which people were brought to the moon and back, like capsules. Further he developed an advanced space transportation system, the U.S. Space Shuttle Orbiter, which is the only winged space vehicle ever in operation. Today it is no problem to solve the governing equations in the most general form using discrete numerical methods. The numerical approximation schemes, the computer power and the modern storage capacity are in such an advanced state, that solutions with high degree of accuracy can be obtained in a few seconds. Therefore the general practice in this book is to provide numerical solutions for all discussed topics and problems. This could be the orbit determination by the orbital elements, Lagrange's perturbation equations for disturbed Earth's orbits, the flight of a mass point in flight path coordinates (three degree of freedom), and the flight of a controlled space vehicle in body fixed coordinates (six degree of freedom). This book has been written not only for graduate and doctoral students but also for non-specialists who may be interested in this subject or concerned with space flight mechanics. 
650 0 |a Engineering. 
650 0 |a Observations, Astronomical. 
650 0 |a Astronomy  |x Observations. 
650 0 |a Space sciences. 
650 0 |a Fluid mechanics. 
650 0 |a Automotive engineering. 
650 0 |a Aerospace engineering. 
650 0 |a Astronautics. 
650 1 4 |a Engineering. 
650 2 4 |a Aerospace Technology and Astronautics. 
650 2 4 |a Automotive Engineering. 
650 2 4 |a Extraterrestrial Physics, Space Sciences. 
650 2 4 |a Engineering Fluid Dynamics. 
650 2 4 |a Astronomy, Observations and Techniques. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642135828 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-13583-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)