Incremental Learning for Motion Prediction of Pedestrians and Vehicles

Modeling and predicting human and vehicle motion is an active research domain. Owing to the difficulty in modeling the various factors that determine motion (e.g. internal state, perception) this is often tackled by applying machine learning techniques to build a statistical model, using as input a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Govea, Alejandro Dizan Vasquez (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Σειρά:Springer Tracts in Advanced Robotics, 64
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03447nam a22005175i 4500
001 978-3-642-13642-9
003 DE-He213
005 20151204152452.0
007 cr nn 008mamaa
008 100715s2010 gw | s |||| 0|eng d
020 |a 9783642136429  |9 978-3-642-13642-9 
024 7 |a 10.1007/978-3-642-13642-9  |2 doi 
040 |d GrThAP 
050 4 |a TJ210.2-211.495 
050 4 |a T59.5 
072 7 |a TJFM1  |2 bicssc 
072 7 |a TEC037000  |2 bisacsh 
072 7 |a TEC004000  |2 bisacsh 
082 0 4 |a 629.892  |2 23 
100 1 |a Govea, Alejandro Dizan Vasquez.  |e author. 
245 1 0 |a Incremental Learning for Motion Prediction of Pedestrians and Vehicles  |h [electronic resource] /  |c by Alejandro Dizan Vasquez Govea. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 |a 160 p. 35 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Tracts in Advanced Robotics,  |x 1610-7438 ;  |v 64 
505 0 |a I: Background -- Probabilistic Models -- II: State of the Art -- Intentional Motion Prediction -- Hidden Markov Models -- III: Proposed Approach -- Growing Hidden Markov Models -- Learning and Predicting Motion with GHMMs -- IV: Experiments -- Experimental Data -- Experimental Results -- V: Conclusion -- Conclusions and Future Work. 
520 |a Modeling and predicting human and vehicle motion is an active research domain. Owing to the difficulty in modeling the various factors that determine motion (e.g. internal state, perception) this is often tackled by applying machine learning techniques to build a statistical model, using as input a collection of trajectories gathered through a sensor (e.g. camera, laser scanner), and then using that model to predict further motion. Unfortunately, most current techniques use offline learning algorithms, meaning that they are not able to learn new motion patterns once the learning stage has finished. This books presents a lifelong learning approach where motion patterns can be learned incrementally, and in parallel with prediction. The approach is based on a novel extension to hidden Markov models, and the main contribution presented in this book, called growing hidden Markov models, which gives us the ability to learn incrementally both the parameters and the structure of the model. The proposed approach has been extensively validated with synthetic and real trajectory data. In our experiments our approach consistently learned motion models that were more compact and accurate than those produced by two other state-of-the-art techniques, confirming the viability of lifelong learning approaches to build human behavior models. 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Pattern recognition. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 1 4 |a Engineering. 
650 2 4 |a Robotics and Automation. 
650 2 4 |a Pattern Recognition. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642136412 
830 0 |a Springer Tracts in Advanced Robotics,  |x 1610-7438 ;  |v 64 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-13642-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)