Recruitment Learning

This book presents a fascinating and self-contained account of "recruitment learning", a model and theory of fast learning in the neocortex. In contrast to the more common attractor network paradigm for long- and short-term memory, recruitment learning focuses on one-shot learning or "...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Diederich, Joachim (Συγγραφέας), Günay, Cengiz (Συγγραφέας), Hogan, James M. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Σειρά:Studies in Computational Intelligence, 303
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03430nam a22005055i 4500
001 978-3-642-14028-0
003 DE-He213
005 20151125141835.0
007 cr nn 008mamaa
008 101129s2011 gw | s |||| 0|eng d
020 |a 9783642140280  |9 978-3-642-14028-0 
024 7 |a 10.1007/978-3-642-14028-0  |2 doi 
040 |d GrThAP 
050 4 |a TA329-348 
050 4 |a TA640-643 
072 7 |a TBJ  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 519  |2 23 
100 1 |a Diederich, Joachim.  |e author. 
245 1 0 |a Recruitment Learning  |h [electronic resource] /  |c by Joachim Diederich, Cengiz Günay, James M. Hogan. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a X, 314 p. 109 illus., 33 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 303 
505 0 |a PART I: Recruitment in Discrete Time Neural Networks -- Recruitment Learning – An Introduction -- One-shot learning - Specialization and Generalization -- Connectivity and Candidate Structures -- Representation and Recruitment -- Cognitive Applications -- PART II: Recruitment in Continuous Time Neural Networks -- Spiking Neural Networks and Temporal Binding -- Synchronised Recruitment in Cortical -- The Stability of Recruited Concepts -- Conclusions. 
520 |a This book presents a fascinating and self-contained account of "recruitment learning", a model and theory of fast learning in the neocortex. In contrast to the more common attractor network paradigm for long- and short-term memory, recruitment learning focuses on one-shot learning or "chunking" of arbitrary feature conjunctions that co-occur in single presentations. The book starts with a comprehensive review of the historic background of recruitment learning, putting special emphasis on the ground-breaking work of D.O. Hebb, W.A.Wickelgren, J.A.Feldman, L.G.Valiant, and L. Shastri. Afterwards a thorough mathematical analysis of the model is presented which shows that recruitment is indeed a plausible mechanism of memory formation in the neocortex. A third part extends the main concepts towards state-of-the-art spiking neuron models and dynamic synchronization as a tentative solution of the binding problem. The book further discusses the possible role of adult neurogenesis for recruitment. These recent developments put the theory of recruitment learning at the forefront of research on biologically inspired memory models and make the book an important and timely contribution to the field. 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Engineering. 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 |a Günay, Cengiz.  |e author. 
700 1 |a Hogan, James M.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642140273 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 303 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-14028-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)