Geometric Theory of Discrete Nonautonomous Dynamical Systems

Nonautonomous dynamical systems provide a mathematical framework for temporally changing phenomena, where the law of evolution varies in time due to seasonal, modulation, controlling or even random effects. Our goal is to provide an approach to the corresponding geometric theory of nonautonomous dis...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Pötzsche, Christian (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Σειρά:Lecture Notes in Mathematics, 2002
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02751nam a22004695i 4500
001 978-3-642-14258-1
003 DE-He213
005 20151204165312.0
007 cr nn 008mamaa
008 100825s2010 gw | s |||| 0|eng d
020 |a 9783642142581  |9 978-3-642-14258-1 
024 7 |a 10.1007/978-3-642-14258-1  |2 doi 
040 |d GrThAP 
050 4 |a QA313 
072 7 |a PBWR  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 |a Pötzsche, Christian.  |e author. 
245 1 0 |a Geometric Theory of Discrete Nonautonomous Dynamical Systems  |h [electronic resource] /  |c by Christian Pötzsche. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 |a XXIV, 399 p. 17 illus., 2 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2002 
505 0 |a Nonautonomous Dynamical Systems -- Nonautonomous Difference Equations -- Linear Difference Equations -- Invariant Fiber Bundles -- Linearization. 
520 |a Nonautonomous dynamical systems provide a mathematical framework for temporally changing phenomena, where the law of evolution varies in time due to seasonal, modulation, controlling or even random effects. Our goal is to provide an approach to the corresponding geometric theory of nonautonomous discrete dynamical systems in infinite-dimensional spaces by virtue of 2-parameter semigroups (processes). These dynamical systems are generated by implicit difference equations, which explicitly depend on time. Compactness and dissipativity conditions are provided for such problems in order to have attractors using the natural concept of pullback convergence. Concerning a necessary linear theory, our hyperbolicity concept is based on exponential dichotomies and splittings. This concept is in turn used to construct nonautonomous invariant manifolds, so-called fiber bundles, and deduce linearization theorems. The results are illustrated using temporal and full discretizations of evolutionary differential equations. 
650 0 |a Mathematics. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Dynamical Systems and Ergodic Theory. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642142574 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2002 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-14258-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)