The Analysis of Fractional Differential Equations An Application-Oriented Exposition Using Differential Operators of Caputo Type /

Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In partic...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Diethelm, Kai (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Σειρά:Lecture Notes in Mathematics, 2004
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03279nam a22005055i 4500
001 978-3-642-14574-2
003 DE-He213
005 20151123154605.0
007 cr nn 008mamaa
008 100825s2010 gw | s |||| 0|eng d
020 |a 9783642145742  |9 978-3-642-14574-2 
024 7 |a 10.1007/978-3-642-14574-2  |2 doi 
040 |d GrThAP 
050 4 |a QA372 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
082 0 4 |a 515.352  |2 23 
100 1 |a Diethelm, Kai.  |e author. 
245 1 4 |a The Analysis of Fractional Differential Equations  |h [electronic resource] :  |b An Application-Oriented Exposition Using Differential Operators of Caputo Type /  |c by Kai Diethelm. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 |a VIII, 247 p. 10 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2004 
505 0 |a Fundamentals of Fractional Calculus -- Riemann-Liouville Differential and Integral Operators -- Caputo’s Approach -- Mittag-Leffler Functions -- Theory of Fractional Differential Equations -- Existence and Uniqueness Results for Riemann-Liouville Fractional Differential Equations -- Single-Term Caputo Fractional Differential Equations: Basic Theory and Fundamental Results -- Single-Term Caputo Fractional Differential Equations: Advanced Results for Special Cases -- Multi-Term Caputo Fractional Differential Equations. 
520 |a Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In particular, typical mathematical works provide extensive findings on aspects with comparatively little significance in applications, and the engineering literature often lacks mathematical detail and precision. This book bridges the gap between the two communities. It concentrates on the class of fractional derivatives most important in applications, the Caputo operators, and provides a self-contained, thorough and mathematically rigorous study of their properties and of the corresponding differential equations. The text is a useful tool for mathematicians and researchers from the applied sciences alike. It can also be used as a basis for teaching graduate courses on fractional differential equations. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Integral equations. 
650 0 |a Differential equations. 
650 1 4 |a Mathematics. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Integral Equations. 
650 2 4 |a Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642145735 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2004 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-14574-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)