Morrey and Campanato Meet Besov, Lizorkin and Triebel

During the last 60 years the theory of function spaces has been a subject of growing interest and increasing diversity. Based on three formally different developments, namely, the theory of Besov and Triebel-Lizorkin spaces, the theory of Morrey and Campanato spaces and the theory of Q spaces, the a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Yuan, Wen (Συγγραφέας), Sickel, Winfried (Συγγραφέας), Yang, Dachun (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Σειρά:Lecture Notes in Mathematics, 2005
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02163nam a22005055i 4500
001 978-3-642-14606-0
003 DE-He213
005 20150207052632.0
007 cr nn 008mamaa
008 100907s2010 gw | s |||| 0|eng d
020 |a 9783642146060  |9 978-3-642-14606-0 
024 7 |a 10.1007/978-3-642-14606-0  |2 doi 
040 |d GrThAP 
050 4 |a QA403.5-404.5 
072 7 |a PBKF  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.2433  |2 23 
100 1 |a Yuan, Wen.  |e author. 
245 1 0 |a Morrey and Campanato Meet Besov, Lizorkin and Triebel  |h [electronic resource] /  |c by Wen Yuan, Winfried Sickel, Dachun Yang. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 |a XII, 288 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2005 
520 |a During the last 60 years the theory of function spaces has been a subject of growing interest and increasing diversity. Based on three formally different developments, namely, the theory of Besov and Triebel-Lizorkin spaces, the theory of Morrey and Campanato spaces and the theory of Q spaces, the authors develop a unified framework for all of these spaces. As a byproduct, the authors provide a completion of the theory of Triebel-Lizorkin spaces when p = ∞. 
650 0 |a Mathematics. 
650 0 |a Fourier analysis. 
650 0 |a Functional analysis. 
650 0 |a Operator theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Fourier Analysis. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Operator Theory. 
700 1 |a Sickel, Winfried.  |e author. 
700 1 |a Yang, Dachun.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642146053 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2005 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-14606-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)