Mathematical Theory of Elasticity of Quasicrystals and Its Applications

This inter-disciplinary work covering the continuum mechanics of novel materials, condensed matter physics and partial differential equations discusses the mathematical theory of elasticity of quasicrystals (a new condensed matter) and its applications by setting up new partial differential equation...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Fan, Tianyou (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04079nam a22004935i 4500
001 978-3-642-14643-5
003 DE-He213
005 20151125192228.0
007 cr nn 008mamaa
008 110525s2011 gw | s |||| 0|eng d
020 |a 9783642146435  |9 978-3-642-14643-5 
024 7 |a 10.1007/978-3-642-14643-5  |2 doi 
040 |d GrThAP 
050 4 |a TA405-409.3 
050 4 |a QA808.2 
072 7 |a TG  |2 bicssc 
072 7 |a TEC009070  |2 bisacsh 
072 7 |a TEC021000  |2 bisacsh 
082 0 4 |a 620.1  |2 23 
100 1 |a Fan, Tianyou.  |e author. 
245 1 0 |a Mathematical Theory of Elasticity of Quasicrystals and Its Applications  |h [electronic resource] /  |c by Tianyou Fan. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a 350 p. 40 illus., 8 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Preface -- Crystals -- Framework of the classical theory of elasticity -- Quasicrystals and their properties -- Physical basis of the elasticity of quasicrystals -- Elasticity theory of one-dimensional quasicrystals and simplification -- Elasticity theory of two-dimensional quaiscrystals and simplification -- Application I--Some dislocation problems and solutions of one- and two-dimensional quasicrystals -- Application II--Some notch and crack problems and solutions of one- and two-dimensional quasicrystals -- Elasticity of three-dimensional quasicrystals and applications -- Elastodynamics of quasicrystals -- Complex variable function method -- Variational principles, numerical method and solutions of two-dimensional quasicrystals -- Some mathematical principles on solutions of elasticity of quasicrystals -- Nonlinear elasticity and plasticity -- Fracture theory of quasicrystals -- Possible applications of elasticity to the study of specific heat of quasicrystals. 
520 |a This inter-disciplinary work covering the continuum mechanics of novel materials, condensed matter physics and partial differential equations discusses the mathematical theory of elasticity of quasicrystals (a new condensed matter) and its applications by setting up new partial differential equations of higher order and their solutions under complicated boundary value and initial value conditions. The new theories developed here dramatically simplify the solving of complicated elasticity equation systems. Large numbers of complicated equations involving elasticity are reduced to a single or a few partial differential equations of higher order. Systematical and direct methods of mathematical physics and complex variable functions are developed to solve the equations under appropriate boundary value and initial value conditions, and many exact analytical solutions are constructed. The dynamic and non-linear analysis of deformation and fracture of quasicrystals in this volume presents an innovative approach. It gives a clear-cut, strict and systematic mathematical overview of the field. Comprehensive and detailed mathematical derivations guide readers through the work. By combining mathematical calculations and experimental data, theoretical analysis and practical applications, and analytical and numerical studies, readers will gain systematic, comprehensive and in-depth knowledge on continuum mechanics, condensed matter physics and applied mathematics. 
650 0 |a Engineering. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Condensed matter. 
650 0 |a Continuum mechanics. 
650 1 4 |a Engineering. 
650 2 4 |a Continuum Mechanics and Mechanics of Materials. 
650 2 4 |a Condensed Matter Physics. 
650 2 4 |a Applications of Mathematics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642146428 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-14643-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)