Topology and Geometry for Physics

A concise but self-contained introduction of the central concepts of modern topology and differential geometry on a mathematical level is given specifically with applications in physics in mind. All basic concepts are systematically provided including sketches of the proofs of most statements. Smoot...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Eschrig, Helmut (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011.
Σειρά:Lecture Notes in Physics, Volume 822, 822
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02390nam a22004335i 4500
001 978-3-642-14700-5
003 DE-He213
005 20151204174006.0
007 cr nn 008mamaa
008 110126s2011 gw | s |||| 0|eng d
020 |a 9783642147005  |9 978-3-642-14700-5 
024 7 |a 10.1007/978-3-642-14700-5  |2 doi 
040 |d GrThAP 
050 4 |a QC5.53 
072 7 |a PHU  |2 bicssc 
072 7 |a SCI040000  |2 bisacsh 
082 0 4 |a 530.15  |2 23 
100 1 |a Eschrig, Helmut.  |e author. 
245 1 0 |a Topology and Geometry for Physics  |h [electronic resource] /  |c by Helmut Eschrig. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2011. 
300 |a XII, 390 p. 60 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Physics, Volume 822,  |x 0075-8450 ;  |v 822 
505 0 |a Introduction -- Topology -- Manifolds -- Tensor Fields -- Integration, Homology and Cohomology -- Lie Groups -- Bundles and Connections -- Parallelism, Holonomy, Homotopy and (Co)homology -- Riemannian Geometry -- Compendium. 
520 |a A concise but self-contained introduction of the central concepts of modern topology and differential geometry on a mathematical level is given specifically with applications in physics in mind. All basic concepts are systematically provided including sketches of the proofs of most statements. Smooth finite-dimensional manifolds, tensor and exterior calculus operating on them, homotopy, (co)homology theory including Morse theory of critical points, as well as the theory of fiber bundles and Riemannian geometry, are treated. Examples from physics comprise topological charges, the topology of periodic boundary conditions for solids, gauge fields, geometric phases in quantum physics and gravitation. 
650 0 |a Physics. 
650 1 4 |a Physics. 
650 2 4 |a Mathematical Methods in Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642146992 
830 0 |a Lecture Notes in Physics, Volume 822,  |x 0075-8450 ;  |v 822 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-14700-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-PHA 
912 |a ZDB-2-LNP 
950 |a Physics and Astronomy (Springer-11651)