|
|
|
|
LEADER |
03003nam a22005535i 4500 |
001 |
978-3-642-14767-8 |
003 |
DE-He213 |
005 |
20151125192019.0 |
007 |
cr nn 008mamaa |
008 |
101029s2011 gw | s |||| 0|eng d |
020 |
|
|
|a 9783642147678
|9 978-3-642-14767-8
|
024 |
7 |
|
|a 10.1007/978-3-642-14767-8
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a TA357-359
|
072 |
|
7 |
|a TGMF
|2 bicssc
|
072 |
|
7 |
|a TGMF1
|2 bicssc
|
072 |
|
7 |
|a TEC009070
|2 bisacsh
|
072 |
|
7 |
|a SCI085000
|2 bisacsh
|
082 |
0 |
4 |
|a 620.1064
|2 23
|
100 |
1 |
|
|a Dewan, Anupam.
|e author.
|
245 |
1 |
0 |
|a Tackling Turbulent Flows in Engineering
|h [electronic resource] /
|c by Anupam Dewan.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg :
|b Imprint: Springer,
|c 2011.
|
300 |
|
|
|a XII, 124 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
505 |
0 |
|
|a Introduction -- Reynolds-Averaging and Closure Problem -- Models Based on Boussinesq Approximation -- Standard k-e Model -- Reynolds Stress Transport Models -- Direct Numerical Simulation -- Large Eddy Simulation -- Conclusions.
|
520 |
|
|
|a The emphasis of this book is on engineering aspects of fluid turbulence. The book explains for example how to tackle turbulence in industrial applications. It is useful to several disciplines, such as, mechanical, civil, chemical, aerospace engineers and also to professors, researchers, beginners, under graduates and post graduates. The following issues are emphasized in the book: - Modeling and computations of engineering flows: The author discusses in detail the quantities of interest for engineering turbulent flows and how to select an appropriate turbulence model; Also, a treatment of the selection of appropriate boundary conditions for the CFD simulations is given. - Modeling of turbulent convective heat transfer: This is encountered in several practical situations. It basically needs discussion on issues of treatment of walls and turbulent heat fluxes. - Modeling of buoyancy driven flows, for example, smoke issuing from chimney, pollutant discharge into water bodies, etc.
|
650 |
|
0 |
|a Engineering.
|
650 |
|
0 |
|a Fluids.
|
650 |
|
0 |
|a Statistical physics.
|
650 |
|
0 |
|a Dynamical systems.
|
650 |
|
0 |
|a Thermodynamics.
|
650 |
|
0 |
|a Heat engineering.
|
650 |
|
0 |
|a Heat transfer.
|
650 |
|
0 |
|a Mass transfer.
|
650 |
|
0 |
|a Fluid mechanics.
|
650 |
1 |
4 |
|a Engineering.
|
650 |
2 |
4 |
|a Engineering Fluid Dynamics.
|
650 |
2 |
4 |
|a Fluid- and Aerodynamics.
|
650 |
2 |
4 |
|a Engineering Thermodynamics, Heat and Mass Transfer.
|
650 |
2 |
4 |
|a Statistical Physics, Dynamical Systems and Complexity.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9783642147661
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1007/978-3-642-14767-8
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-ENG
|
950 |
|
|
|a Engineering (Springer-11647)
|