|
|
|
|
LEADER |
02667nam a22005535i 4500 |
001 |
978-3-642-14828-6 |
003 |
DE-He213 |
005 |
20151204153910.0 |
007 |
cr nn 008mamaa |
008 |
100929s2010 gw | s |||| 0|eng d |
020 |
|
|
|a 9783642148286
|9 978-3-642-14828-6
|
024 |
7 |
|
|a 10.1007/978-3-642-14828-6
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a QA331-355
|
072 |
|
7 |
|a PBKD
|2 bicssc
|
072 |
|
7 |
|a MAT034000
|2 bisacsh
|
082 |
0 |
4 |
|a 515.9
|2 23
|
100 |
1 |
|
|a Bujalance, Emilio.
|e author.
|
245 |
1 |
0 |
|a Symmetries of Compact Riemann Surfaces
|h [electronic resource] /
|c by Emilio Bujalance, Francisco Javier Cirre, José Manuel Gamboa, Grzegorz Gromadzki.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg,
|c 2010.
|
300 |
|
|
|a XX, 164 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Lecture Notes in Mathematics,
|x 0075-8434 ;
|v 2007
|
505 |
0 |
|
|a Preliminaries -- On the Number of Conjugacy Classes of Symmetries of Riemann Surfaces -- Counting Ovals of Symmetries of Riemann Surfaces -- Symmetry Types of Some Families of Riemann Surfaces -- Symmetry Types of Riemann Surfaces with a Large Group of Automorphisms.
|
520 |
|
|
|a This monograph deals with symmetries of compact Riemann surfaces. A symmetry of a compact Riemann surface S is an antianalytic involution of S. It is well known that Riemann surfaces exhibiting symmetry correspond to algebraic curves which can be defined over the field of real numbers. In this monograph we consider three topics related to the topology of symmetries, namely the number of conjugacy classes of symmetries, the numbers of ovals of symmetries and the symmetry types of Riemann surfaces.
|
650 |
|
0 |
|a Mathematics.
|
650 |
|
0 |
|a Algebraic geometry.
|
650 |
|
0 |
|a Group theory.
|
650 |
|
0 |
|a Functions of complex variables.
|
650 |
|
0 |
|a Topology.
|
650 |
1 |
4 |
|a Mathematics.
|
650 |
2 |
4 |
|a Functions of a Complex Variable.
|
650 |
2 |
4 |
|a Algebraic Geometry.
|
650 |
2 |
4 |
|a Group Theory and Generalizations.
|
650 |
2 |
4 |
|a Topology.
|
700 |
1 |
|
|a Cirre, Francisco Javier.
|e author.
|
700 |
1 |
|
|a Gamboa, José Manuel.
|e author.
|
700 |
1 |
|
|a Gromadzki, Grzegorz.
|e author.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9783642148279
|
830 |
|
0 |
|a Lecture Notes in Mathematics,
|x 0075-8434 ;
|v 2007
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1007/978-3-642-14828-6
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-SMA
|
912 |
|
|
|a ZDB-2-LNM
|
950 |
|
|
|a Mathematics and Statistics (Springer-11649)
|