Symmetries of Compact Riemann Surfaces

This monograph deals with symmetries of compact Riemann surfaces. A symmetry of a compact Riemann surface S is an antianalytic involution of S. It is well known that Riemann surfaces exhibiting symmetry correspond to algebraic curves which can be defined over the field of real numbers. In this monog...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Bujalance, Emilio (Συγγραφέας), Cirre, Francisco Javier (Συγγραφέας), Gamboa, José Manuel (Συγγραφέας), Gromadzki, Grzegorz (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Σειρά:Lecture Notes in Mathematics, 2007
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02667nam a22005535i 4500
001 978-3-642-14828-6
003 DE-He213
005 20151204153910.0
007 cr nn 008mamaa
008 100929s2010 gw | s |||| 0|eng d
020 |a 9783642148286  |9 978-3-642-14828-6 
024 7 |a 10.1007/978-3-642-14828-6  |2 doi 
040 |d GrThAP 
050 4 |a QA331-355 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.9  |2 23 
100 1 |a Bujalance, Emilio.  |e author. 
245 1 0 |a Symmetries of Compact Riemann Surfaces  |h [electronic resource] /  |c by Emilio Bujalance, Francisco Javier Cirre, José Manuel Gamboa, Grzegorz Gromadzki. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 |a XX, 164 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2007 
505 0 |a Preliminaries -- On the Number of Conjugacy Classes of Symmetries of Riemann Surfaces -- Counting Ovals of Symmetries of Riemann Surfaces -- Symmetry Types of Some Families of Riemann Surfaces -- Symmetry Types of Riemann Surfaces with a Large Group of Automorphisms. 
520 |a This monograph deals with symmetries of compact Riemann surfaces. A symmetry of a compact Riemann surface S is an antianalytic involution of S. It is well known that Riemann surfaces exhibiting symmetry correspond to algebraic curves which can be defined over the field of real numbers. In this monograph we consider three topics related to the topology of symmetries, namely the number of conjugacy classes of symmetries, the numbers of ovals of symmetries and the symmetry types of Riemann surfaces. 
650 0 |a Mathematics. 
650 0 |a Algebraic geometry. 
650 0 |a Group theory. 
650 0 |a Functions of complex variables. 
650 0 |a Topology. 
650 1 4 |a Mathematics. 
650 2 4 |a Functions of a Complex Variable. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Group Theory and Generalizations. 
650 2 4 |a Topology. 
700 1 |a Cirre, Francisco Javier.  |e author. 
700 1 |a Gamboa, José Manuel.  |e author. 
700 1 |a Gromadzki, Grzegorz.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642148279 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2007 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-14828-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)