Normal Approximation by Stein’s Method

Since its introduction in 1972, Stein’s method has offered a completely novel way of evaluating the quality of normal approximations. Through its characterizing equation approach, it is able to provide approximation error bounds in a wide variety of situations, even in the presence of complicated de...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Chen, Louis H.Y (Συγγραφέας), Goldstein, Larry (Συγγραφέας), Shao, Qi-Man (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Σειρά:Probability and Its Applications,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03210nam a22004815i 4500
001 978-3-642-15007-4
003 DE-He213
005 20151204142511.0
007 cr nn 008mamaa
008 101013s2011 gw | s |||| 0|eng d
020 |a 9783642150074  |9 978-3-642-15007-4 
024 7 |a 10.1007/978-3-642-15007-4  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Chen, Louis H.Y.  |e author. 
245 1 0 |a Normal Approximation by Stein’s Method  |h [electronic resource] /  |c by Louis H.Y. Chen, Larry Goldstein, Qi-Man Shao. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a XII, 408 p. 3 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Probability and Its Applications,  |x 1431-7028 
505 0 |a Preface -- 1.Introduction -- 2.Fundamentals of Stein's Method -- 3.Berry-Esseen Bounds for Independent Random Variables -- 4.L^1 Bounds -- 5.L^1 by Bounded Couplings -- 6 L^1: Applications -- 7.Non-uniform Bounds for Independent Random Variables -- 8.Uniform and Non-uniform Bounds under Local Dependence -- 9.Uniform and Non-Uniform Bounds for Non-linear Statistics -- 10.Moderate Deviations -- 11.Multivariate Normal Approximation -- 12.Discretized normal approximation -- 13.Non-normal Approximation -- 14.Extensions -- References -- Author Index -- Subject Index -- Notation. 
520 |a Since its introduction in 1972, Stein’s method has offered a completely novel way of evaluating the quality of normal approximations. Through its characterizing equation approach, it is able to provide approximation error bounds in a wide variety of situations, even in the presence of complicated dependence. Use of the method thus opens the door to the analysis of random phenomena arising in areas including statistics, physics, and molecular biology. Though Stein's method for normal approximation is now mature, the literature has so far lacked a complete self contained treatment. This volume contains thorough coverage of the method’s fundamentals, includes a large number of recent developments in both theory and applications, and will help accelerate the appreciation, understanding, and use of Stein's method by providing the reader with the tools needed to apply it in new situations. It addresses researchers as well as graduate students in Probability, Statistics and Combinatorics. 
650 0 |a Mathematics. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
700 1 |a Goldstein, Larry.  |e author. 
700 1 |a Shao, Qi-Man.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642150067 
830 0 |a Probability and Its Applications,  |x 1431-7028 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-15007-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)