Normal Approximation by Stein’s Method
Since its introduction in 1972, Stein’s method has offered a completely novel way of evaluating the quality of normal approximations. Through its characterizing equation approach, it is able to provide approximation error bounds in a wide variety of situations, even in the presence of complicated de...
Κύριοι συγγραφείς: | , , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg,
2011.
|
Σειρά: | Probability and Its Applications,
|
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Preface
- 1.Introduction
- 2.Fundamentals of Stein's Method
- 3.Berry-Esseen Bounds for Independent Random Variables
- 4.L^1 Bounds
- 5.L^1 by Bounded Couplings
- 6 L^1: Applications
- 7.Non-uniform Bounds for Independent Random Variables
- 8.Uniform and Non-uniform Bounds under Local Dependence
- 9.Uniform and Non-Uniform Bounds for Non-linear Statistics
- 10.Moderate Deviations
- 11.Multivariate Normal Approximation
- 12.Discretized normal approximation
- 13.Non-normal Approximation
- 14.Extensions
- References
- Author Index
- Subject Index
- Notation.