Data Integration in the Life Sciences 7th International Conference, DILS 2010, Gothenburg, Sweden, August 25-27, 2010. Proceedings /

The development and increasingly widespread deployment of high-throughput experimental methods in the life sciences is giving rise to numerous large, c- plex and valuable data resources. This foundation of experimental data und- pins the systematic study of organismsand diseases, which increasinglyd...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Lambrix, Patrick (Επιμελητής έκδοσης), Kemp, Graham (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Σειρά:Lecture Notes in Computer Science, 6254
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Invited Talks
  • Provenance Management for Data Exploration
  • High-Performance Systems for in Silico Microscopy Imaging Studies
  • Ontology Engineering
  • Discovering Evolving Regions in Life Science Ontologies
  • On Matching Large Life Science Ontologies in Parallel
  • A System for Debugging Missing Is-a Structure in Networked Ontologies
  • Web Services
  • On the Secure Sharing and Aggregation of Data to Support Systems Biology Research
  • Helping Biologists Effectively Build Workflows, without Programming
  • A Data Warehouse Approach to Semantic Integration of Pseudomonas Data
  • Data Mining and Text Mining
  • The Cinderella of Biological Data Integration: Addressing Some of the Challenges of Entity and Relationship Mining from Patent Sources
  • Algorithm for Grounding Mutation Mentions from Text to Protein Sequences
  • Handling Missing Features with Boosting Algorithms for Protein–Protein Interaction Prediction
  • Instance Discovery and Schema Matching with Applications to Biological Deep Web Data Integration
  • Information Management
  • Integrative Information Management for Systems Biology
  • An Integration Architecture Designed to Deal with the Issues of Biological Scope, Scale and Complexity
  • Quality Assessment of MAGE-ML Genomic Datasets Using DescribeX
  • Search Computing: Integrating Ranked Data in the Life Sciences.