Evolvable Systems: From Biology to Hardware 9th International Conference, ICES 2010, York, UK, September 6-8, 2010. Proceedings /

Biology has inspired electronics from the very beginning: the machines that we now call computers are deeply rooted in biological metaphors. Pioneers such as Alan Turing and John von Neumann openly declared their aim of creating arti?cial machines that could mimic some of the behaviors exhibited by...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Tempesti, Gianluca (Επιμελητής έκδοσης), Tyrrell, Andy M. (Επιμελητής έκδοσης), Miller, Julian F. (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Σειρά:Lecture Notes in Computer Science, 6274
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 06476nam a22005895i 4500
001 978-3-642-15323-5
003 DE-He213
005 20170119200250.0
007 cr nn 008mamaa
008 100904s2010 gw | s |||| 0|eng d
020 |a 9783642153235  |9 978-3-642-15323-5 
024 7 |a 10.1007/978-3-642-15323-5  |2 doi 
040 |d GrThAP 
050 4 |a QA76.758 
072 7 |a UMZ  |2 bicssc 
072 7 |a COM051230  |2 bisacsh 
082 0 4 |a 005.1  |2 23 
245 1 0 |a Evolvable Systems: From Biology to Hardware  |h [electronic resource] :  |b 9th International Conference, ICES 2010, York, UK, September 6-8, 2010. Proceedings /  |c edited by Gianluca Tempesti, Andy M. Tyrrell, Julian F. Miller. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2010. 
300 |a XII, 394 p. 228 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 6274 
505 0 |a Session 1: Evolving Digital Circuits -- Measuring the Performance and Intrinsic Variability of Evolved Circuits -- An Efficient Selection Strategy for Digital Circuit Evolution -- Introducing Flexibility in Digital Circuit Evolution: Exploiting Undefined Values in Binary Truth Tables -- Evolving Digital Circuits Using Complex Building Blocks -- Session 2: Artificial Development -- Fault Tolerance of Embryonic Algorithms in Mobile Networks -- Evolution and Analysis of a Robot Controller Based on a Gene Regulatory Network -- A New Method to Find Developmental Descriptions for Digital Circuits -- Sorting Network Development Using Cellular Automata -- Session 3: GPU Platforms for Bio-inspired Algorithms -- Markerless Articulated Human Body Tracking from Multi-view Video with GPU-PSO -- Evolving Object Detectors with a GPU Accelerated Vision System -- Systemic Computation Using Graphics Processors -- Session 4: Implementations and Applications of Neural Networks -- An Efficient, High-Throughput Adaptive NoC Router for Large Scale Spiking Neural Network Hardware Implementations -- Performance Evaluation and Scaling of a Multiprocessor Architecture Emulating Complex SNN Algorithms -- Evolution of Analog Circuit Models of Ion Channels -- HyperNEAT for Locomotion Control in Modular Robots -- Session 5: Test, Repair and Reconfiguration Using Evolutionary Algorithms -- The Use of Genetic Algorithm to Reduce Power Consumption during Test Application -- Designing Combinational Circuits with an Evolutionary Algorithm Based on the Repair Technique -- Bio-inspired Self-testing Configurable Circuits -- Evolutionary Design of Reconfiguration Strategies to Reduce the Test Application Time -- Session 6: Applications of Evolutionary Algorithms in Hardware -- Extrinsic Evolution of Fuzzy Systems Applied to Disease Diagnosis -- Automatic Code Generation on a MOVE Processor Using Cartesian Genetic Programming -- Coping with Resource Fluctuations: The Run-time Reconfigurable Functional Unit Row Classifier Architecture -- Session 7: Reconfigurable Hardware Platforms -- A Self-reconfigurable FPGA-Based Platform for Prototyping Future Pervasive Systems -- The X2 Modular Evolutionary Robotics Platform -- Ubichip, Ubidule, and MarXbot: A Hardware Platform for the Simulation of Complex Systems -- Implementation of a Power-Aware Dynamic Fault Tolerant Mechanism on the Ubichip Platform -- Session 8: Applications of Evolution to Technology -- Automatic Synthesis of Lossless Matching Networks -- A Novel Approach to Multi-level Evolutionary Design Optimization of a MEMS Device -- From Binary to Continuous Gates – and Back Again -- Adaptive vs. Self-adaptive Parameters for Evolving Quantum Circuits -- Session 9: Novel Methods in Evolutionary Design -- Imitation Programming -- EvoFab: A Fully Embodied Evolutionary Fabricator -- Evolving Physical Self-assembling Systems in Two-Dimensions. 
520 |a Biology has inspired electronics from the very beginning: the machines that we now call computers are deeply rooted in biological metaphors. Pioneers such as Alan Turing and John von Neumann openly declared their aim of creating arti?cial machines that could mimic some of the behaviors exhibited by natural organisms. Unfortunately, technology had not progressed enough to allow them to put their ideas into practice. The 1990s saw the introduction of programmable devices, both digital (FP- GAs) and analogue (FPAAs). These devices, by allowing the functionality and the structure of electronic devices to be easily altered, enabled researchers to endow circuits with some of the same versatility exhibited by biological entities and sparked a renaissance in the ?eld of bio-inspired electronics with the birth of what is generally known as evolvable hardware. Eversince,the?eldhasprogressedalongwiththetechnologicalimprovements and has expanded to take into account many di?erent biological processes, from evolution to learning, from development to healing. Of course, the application of these processes to electronic devices is not always straightforward (to say the least!), but rather than being discouraged, researchers in the community have shown remarkable ingenuity, as demostrated by the variety of approaches presented at this conference and included in these proceedings. 
650 0 |a Computer science. 
650 0 |a Computer communication systems. 
650 0 |a Special purpose computers. 
650 0 |a Software engineering. 
650 0 |a Computers. 
650 0 |a Computer logic. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Software Engineering. 
650 2 4 |a Computation by Abstract Devices. 
650 2 4 |a Computer Communication Networks. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Logics and Meanings of Programs. 
650 2 4 |a Special Purpose and Application-Based Systems. 
700 1 |a Tempesti, Gianluca.  |e editor. 
700 1 |a Tyrrell, Andy M.  |e editor. 
700 1 |a Miller, Julian F.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642153228 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 6274 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-15323-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (Springer-11645)