Variational and Level Set Methods in Image Segmentation

Image segmentation consists of dividing an image domain into disjoint regions according to a characterization of the image within or in-between the regions. Therefore, segmenting an image is to divide its domain into relevant components. The efficient solution of the key problems in image segmentati...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Mitiche, Amar (Συγγραφέας), Ben Ayed, Ismail (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Σειρά:Springer Topics in Signal Processing, 5
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03456nam a22005055i 4500
001 978-3-642-15352-5
003 DE-He213
005 20151121052013.0
007 cr nn 008mamaa
008 101029s2011 gw | s |||| 0|eng d
020 |a 9783642153525  |9 978-3-642-15352-5 
024 7 |a 10.1007/978-3-642-15352-5  |2 doi 
040 |d GrThAP 
050 4 |a TK5102.9 
050 4 |a TA1637-1638 
050 4 |a TK7882.S65 
072 7 |a TTBM  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a COM073000  |2 bisacsh 
082 0 4 |a 621.382  |2 23 
100 1 |a Mitiche, Amar.  |e author. 
245 1 0 |a Variational and Level Set Methods in Image Segmentation  |h [electronic resource] /  |c by Amar Mitiche, Ismail Ben Ayed. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a VIII, 192 p. 42 illus., 19 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Topics in Signal Processing,  |x 1866-2609 ;  |v 5 
505 0 |a Introduction -- Image Segmentation -- Image Models -- Optical Flow Estimation -- Joint Optical Flow Estimation and Segmentation -- Optical Flow 3D segmentation -- Appendix. 
520 |a Image segmentation consists of dividing an image domain into disjoint regions according to a characterization of the image within or in-between the regions. Therefore, segmenting an image is to divide its domain into relevant components. The efficient solution of the key problems in image segmentation promises to enable a rich array of useful applications. The current major application areas include robotics, medical image analysis, remote sensing, scene understanding, and image database retrieval. The subject of this book is image segmentation by variational methods with a focus on formulations which use closed regular plane curves to define the segmentation regions and on a level set implementation of the corresponding active curve evolution algorithms. Each method is developed from an objective functional which embeds constraints on both the image domain partition of the segmentation and the image data within or in-between the partition regions. The necessary conditions to optimize the objective functional are then derived and solved numerically. The book covers, within the active curve and level set formalism, the basic two-region segmentation methods, multiregion extensions, region merging, image modeling, and motion based segmentation. To treat various important classes of images, modeling investigates several parametric distributions such as the Gaussian, Gamma, Weibull, and Wishart. It also investigates non-parametric models. In motion segmentation, both optical flow and the movement of real three-dimensional objects are studied. 
650 0 |a Engineering. 
650 0 |a Image processing. 
650 1 4 |a Engineering. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Image Processing and Computer Vision. 
700 1 |a Ben Ayed, Ismail.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642153518 
830 0 |a Springer Topics in Signal Processing,  |x 1866-2609 ;  |v 5 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-15352-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)