The Modelling of Radiation Damage in Metals Using Ehrenfest Dynamics
Atomistic simulations of metals under irradiation are indispensable for understanding damage processes at time- and length-scales beyond the reach of experiment. Previously, such simulations have largely ignored the effect of electronic excitations on the atomic dynamics, even though energy exchange...
Main Author: | |
---|---|
Corporate Author: | |
Format: | Electronic eBook |
Language: | English |
Published: |
Berlin, Heidelberg :
Springer Berlin Heidelberg : Imprint: Springer,
2011.
|
Series: | Springer Theses, Recognizing Outstanding Ph.D. Research,
|
Subjects: | |
Online Access: | Full Text via HEAL-Link |
Table of Contents:
- Introduction
- A Radiation Damage Cascade
- Electronic Excitations in Radiation Damage – a Review
- Theoretical Background
- Simulating Radiation Damage in Metals. A Framework for Simulating Radiation Damage in Metals
- The Single Oscillating Ion
- Semi-calssical Simulations of Collision Cascades
- The Nature of the Electronic Excitations
- The Electronic Forces
- Channelling Ions
- The Electronic Drag Force.-Concluding Remarks
- A. Selected Proofs
- B. Petrubation Theory
- C. The coupling Matrix for a Single Oscillating Ion
- D. Some Features of the Electronic Excitation Spectrum
- E. The Strain on an Inclusion due to Electronic Heating
- Bibliography
- Index.