Sobolev Spaces with Applications to Elliptic Partial Differential Equations /

Sobolev spaces play an outstanding role in modern analysis, in particular, in the theory of partial differential equations and its applications in mathematical physics. They form an indispensable tool in approximation theory, spectral theory, differential geometry etc. The theory of these spaces is...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Maz'ya, Vladimir (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Σειρά:Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics, 342
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04173nam a22004455i 4500
001 978-3-642-15564-2
003 DE-He213
005 20151121051941.0
007 cr nn 008mamaa
008 110210s2011 gw | s |||| 0|eng d
020 |a 9783642155642  |9 978-3-642-15564-2 
024 7 |a 10.1007/978-3-642-15564-2  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Maz'ya, Vladimir.  |e author. 
245 1 0 |a Sobolev Spaces  |h [electronic resource] :  |b with Applications to Elliptic Partial Differential Equations /  |c by Vladimir Maz'ya. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a XXVIII, 866 p. 38 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,  |x 0072-7830 ;  |v 342 
505 0 |a Introduction -- 1 .Basic Properties of Sobolev Spaces -- 2 .Inequalities for Functions Vanishing at the Boundary -- 3.Conductor and Capacitary Inequalities with Applications to Sobolev-type Embeddings -- 4.Generalizations for Functions on Manifolds and Topological Spaces -- 5.Integrability of Functions in the Space L 1/1(Ω) -- 6.Integrability of Functions in the Space L 1/p (Ω) -- 7.Continuity and Boundedness of Functions in Sobolev Spaces -- 8.Localization Moduli of Sobolev Embeddings for General Domains -- 9.Space of Functions of Bounded Variation -- 10.Certain Function Spaces, Capacities and Potentials -- 11 Capacitary and Trace Inequalities for Functions in Rn with Derivatives of an Arbitrary Order.-12.Pointwise Interpolation Inequalities for Derivatives and Potentials -- 13.A Variant of Capacity -- 14.-Integral Inequality for Functions on a Cube -- 15.Embedding of the Space L l/p(Ω) into Other Function Spaces -- 16.Embedding L l/p(Ω) ⊂ W m/r(Ω).-17.Approximation in Weighted Sobolev Spaces.-18.Spectrum of the Schrödinger operator and the Dirichlet Laplacian -- References -- List of Symbols -- Subject Index -- Author Index. 
520 |a Sobolev spaces play an outstanding role in modern analysis, in particular, in the theory of partial differential equations and its applications in mathematical physics. They form an indispensable tool in approximation theory, spectral theory, differential geometry etc. The theory of these spaces is of interest in itself being a beautiful domain of mathematics. The present volume includes basics on Sobolev spaces, approximation and extension theorems, embedding and compactness theorems, their relations with isoperimetric and isocapacitary inequalities, capacities with applications to spectral theory of elliptic differential operators as well as pointwise inequalities for derivatives. The selection of topics is mainly influenced by the author’s involvement in their study, a considerable part of the text is a report on his work in the field. Part of this volume first appeared in German as three booklets of Teubner-Texte zur Mathematik (1979,1980). In the Springer volume “Sobolev Spaces”, published in English in 1985, the material was expanded and revised. The present 2nd edition is enhanced by many recent results and it includes new applications to linear and nonlinear partial differential equations. New historical comments, five new chapters and a significantly augmented list of references aim to create a broader and modern view of the area. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642155635 
830 0 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,  |x 0072-7830 ;  |v 342 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-15564-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)