Points and Lines Characterizing the Classical Geometries /

The classical geometries of points and lines include not only the projective and polar spaces, but similar truncations of geometries naturally arising from the groups of Lie type. Virtually all of these geometries (or homomorphic images of them) are characterized in this book by simple local axioms...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Shult, Ernest (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Σειρά:Universitext
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03550nam a22004695i 4500
001 978-3-642-15627-4
003 DE-He213
005 20151125022113.0
007 cr nn 008mamaa
008 101211s2011 gw | s |||| 0|eng d
020 |a 9783642156274  |9 978-3-642-15627-4 
024 7 |a 10.1007/978-3-642-15627-4  |2 doi 
040 |d GrThAP 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
082 0 4 |a 516  |2 23 
100 1 |a Shult, Ernest.  |e author. 
245 1 0 |a Points and Lines  |h [electronic resource] :  |b Characterizing the Classical Geometries /  |c by Ernest Shult. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a XXII, 676 p. 88 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext 
505 0 |a I.Basics -- 1 Basics about Graphs -- 2 .Geometries: Basic Concepts -- 3 .Point-line Geometries.-4.Hyperplanes, Embeddings and Teirlinck's Eheory -- II.The Classical Geometries -- 5 .Projective Planes.-6.Projective Spaces -- 7.Polar Spaces -- 8.Near Polygons -- III.Methodology -- 9.Chamber Systems and Buildings -- 10.2-Covers of Chamber Systems -- 11.Locally Truncated Diagram Geometries.-12.Separated Systems of Singular Spaces -- 13 Cooperstein's Theory of Symplecta and Parapolar Spaces -- IV.Applications to Other Lie Incidence Geometries -- 15.Characterizing the Classical Strong Parapolar Spaces: The Cohen-Cooperstein Theory Revisited -- 16.Characterizing Strong Parapolar Spaces by the Relation between Points and Certain Maximal Singular Subspaces -- 17.Point-line Characterizations of the “Long Root Geometries” -- 18.The Peculiar Pentagon Property. 
520 |a The classical geometries of points and lines include not only the projective and polar spaces, but similar truncations of geometries naturally arising from the groups of Lie type. Virtually all of these geometries (or homomorphic images of them) are characterized in this book by simple local axioms on points and lines. Simple point-line characterizations of Lie incidence geometries allow one to recognize Lie incidence geometries and their automorphism groups. These tools could be useful in shortening the enormously lengthy classification of finite simple groups. Similarly, recognizing ruled manifolds by axioms on light trajectories offers a way for a physicist to recognize the action of a Lie group in a context where it is not clear what Hamiltonians or Casimir operators are involved. The presentation is self-contained in the sense that proofs proceed step-by-step from elementary first principals without further appeal to outside results. Several chapters have new heretofore unpublished research results. On the other hand, certain groups of chapters would make good graduate courses. All but one chapter provide exercises for either use in such a course, or to elicit new research directions. 
650 0 |a Mathematics. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Geometry. 
650 2 4 |a Topological Groups, Lie Groups. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642156267 
830 0 |a Universitext 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-15627-4  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)