The Mathematics of Knots Theory and Application /

The present volume grew out of the Heidelberg Knot Theory Semester, organized by the editors in winter 2008/09 at Heidelberg University. The contributed papers bring the reader up to date on the currently most actively pursued areas of mathematical knot theory and its applications in mathematical ph...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Banagl, Markus (Επιμελητής έκδοσης), Vogel, Denis (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Σειρά:Contributions in Mathematical and Computational Sciences ; 1
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03143nam a22005535i 4500
001 978-3-642-15637-3
003 DE-He213
005 20151125161813.0
007 cr nn 008mamaa
008 101126s2011 gw | s |||| 0|eng d
020 |a 9783642156373  |9 978-3-642-15637-3 
024 7 |a 10.1007/978-3-642-15637-3  |2 doi 
040 |d GrThAP 
050 4 |a QA611-614.97 
072 7 |a PBP  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 514  |2 23 
245 1 4 |a The Mathematics of Knots  |h [electronic resource] :  |b Theory and Application /  |c edited by Markus Banagl, Denis Vogel. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a X, 357 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Contributions in Mathematical and Computational Sciences ;  |v 1 
505 0 |a Preface -- 1 Knots, Singular Embeddings, and Monodromy -- 2 Lower Bounds on Virtual Crossing Number and Minimal Surface Genus -- 3 A Survey of Twisted Alexander Polynomials -- 4 On Two Categorifications of the Arrow Polynomial for Virtual Knots -- 5 An Adelic Extension of the Jones Polynomial -- 6 Legendrian Grid Number One Knots and Augmentations of their Differential Algebras -- 7 Embeddings of Four-Valent Framed Graphs into 2-Surfaces -- 8 Geometric Topology and Field Theory on 3-Manifolds -- 9 From Goeritz Matrices to Quasi-Alternating Links -- 10 An Overview of Property 2R -- 11 DNA, Knots and Tangles. 
520 |a The present volume grew out of the Heidelberg Knot Theory Semester, organized by the editors in winter 2008/09 at Heidelberg University. The contributed papers bring the reader up to date on the currently most actively pursued areas of mathematical knot theory and its applications in mathematical physics and cell biology. Both original research and survey articles are presented; numerous illustrations support the text. The book will be of great interest to researchers in topology, geometry, and mathematical physics, graduate students specializing in knot theory, and cell biologists interested in the topology of DNA strands. 
650 0 |a Mathematics. 
650 0 |a Differential geometry. 
650 0 |a Topology. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 0 |a Biomathematics. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Topology. 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology). 
650 2 4 |a Differential Geometry. 
650 2 4 |a Physiological, Cellular and Medical Topics. 
650 2 4 |a Numerical and Computational Physics. 
700 1 |a Banagl, Markus.  |e editor. 
700 1 |a Vogel, Denis.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642156366 
830 0 |a Contributions in Mathematical and Computational Sciences ;  |v 1 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-15637-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)