|
|
|
|
LEADER |
03249nam a22005535i 4500 |
001 |
978-3-642-15801-8 |
003 |
DE-He213 |
005 |
20151204153914.0 |
007 |
cr nn 008mamaa |
008 |
110121s2011 gw | s |||| 0|eng d |
020 |
|
|
|a 9783642158018
|9 978-3-642-15801-8
|
024 |
7 |
|
|a 10.1007/978-3-642-15801-8
|2 doi
|
040 |
|
|
|d GrThAP
|
050 |
|
4 |
|a T174.7
|
050 |
|
4 |
|a TA418.9.N35
|
072 |
|
7 |
|a TBN
|2 bicssc
|
072 |
|
7 |
|a TEC027000
|2 bisacsh
|
072 |
|
7 |
|a SCI050000
|2 bisacsh
|
082 |
0 |
4 |
|a 620.115
|2 23
|
100 |
1 |
|
|a Fernandez-Pacheco, Amalio.
|e author.
|
245 |
1 |
0 |
|a Studies of Nanoconstrictions, Nanowires and Fe₃O₄ Thin Films
|h [electronic resource] :
|b Electrical Conduction and Magnetic Properties. Fabrication by Focused Electron/Ion Beam /
|c by Amalio Fernandez-Pacheco.
|
264 |
|
1 |
|a Berlin, Heidelberg :
|b Springer Berlin Heidelberg,
|c 2011.
|
300 |
|
|
|a XVI, 188 p.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
490 |
1 |
|
|a Springer Theses
|
505 |
0 |
|
|a Introduction -- Experimental Techniques -- Magnetotransport Properties of Epitaxial Fe3O4 thin Films -- Conduction in in Atomic-Sized Magnetic Metallic Constructions created by FIB -- Pt-C Nanowires created by FIBID and FEBID -- Superconductor W-Based Nanowires created by FIBID -- Magnetic Cobalt Nanowires created by FEBID -- Conclusions and Outlook -- CV.
|
520 |
|
|
|a This work constitutes a detailed study of electrical and magnetic properties in nanometric materials with a range of scales: atomic-sized nanoconstrictions, micro- and nanowires and thin films. Firstly, a novel method of fabricating atomic-sized constrictions in metals is presented; it relies on measuring the conduction of the device while a focused-ion-beam etching process is in progress. Secondly, it describes wires created by a very promising nanolithography technique: Focused electron/ion-beam-induced deposition. Three different gas precursors were used: (CH₃)₃Pt(CpCH₃), W(CO)₆ and Co₂(CO)₈. The thesis reports the results obtained for various physical phenomena: the metal-insulator transition, superconducting and magnetic properties, respectively. Finally, the detailed magnetotransport properties in epitaxial Fe₃O₄ thin films grown on MgO (001) are presented. Overall, the new approaches developed in this thesis have great potential for supporting novel technologies.
|
650 |
|
0 |
|a Materials science.
|
650 |
|
0 |
|a Nanoscale science.
|
650 |
|
0 |
|a Nanoscience.
|
650 |
|
0 |
|a Nanostructures.
|
650 |
|
0 |
|a Surfaces (Physics).
|
650 |
|
0 |
|a Interfaces (Physical sciences).
|
650 |
|
0 |
|a Thin films.
|
650 |
|
0 |
|a Nanotechnology.
|
650 |
1 |
4 |
|a Materials Science.
|
650 |
2 |
4 |
|a Nanotechnology.
|
650 |
2 |
4 |
|a Nanoscale Science and Technology.
|
650 |
2 |
4 |
|a Surface and Interface Science, Thin Films.
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer eBooks
|
776 |
0 |
8 |
|i Printed edition:
|z 9783642158001
|
830 |
|
0 |
|a Springer Theses
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1007/978-3-642-15801-8
|z Full Text via HEAL-Link
|
912 |
|
|
|a ZDB-2-CMS
|
950 |
|
|
|a Chemistry and Materials Science (Springer-11644)
|