Arithmetic Geometry Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, September 10-15, 2007 /

Arithmetic Geometry can be defined as the part of Algebraic Geometry connected with the study of algebraic varieties over arbitrary rings, in particular over non-algebraically closed fields. It lies at the intersection between classical algebraic geometry and number theory. A C.I.M.E. Summer School...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Colliot-Thélène, Jean-Louis (Συγγραφέας), Swinnerton-Dyer, Peter (Συγγραφέας), Vojta, Paul (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Corvaja, Pietro (Επιμελητής έκδοσης), Gasbarri, Carlo (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010.
Σειρά:Lecture Notes in Mathematics, 2009
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02961nam a22005415i 4500
001 978-3-642-15945-9
003 DE-He213
005 20151123144826.0
007 cr nn 008mamaa
008 101029s2010 gw | s |||| 0|eng d
020 |a 9783642159459  |9 978-3-642-15945-9 
024 7 |a 10.1007/978-3-642-15945-9  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
100 1 |a Colliot-Thélène, Jean-Louis.  |e author. 
245 1 0 |a Arithmetic Geometry  |h [electronic resource] :  |b Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, September 10-15, 2007 /  |c by Jean-Louis Colliot-Thélène, Peter Swinnerton-Dyer, Paul Vojta ; edited by Pietro Corvaja, Carlo Gasbarri. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2010. 
300 |a XI, 232 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2009 
505 0 |a Variétés presque rationnelles, leurs points rationnels et leurs dégénérescences -- Topics in Diophantine Equations -- Diophantine Approximation and Nevanlinna Theory. 
520 |a Arithmetic Geometry can be defined as the part of Algebraic Geometry connected with the study of algebraic varieties over arbitrary rings, in particular over non-algebraically closed fields. It lies at the intersection between classical algebraic geometry and number theory. A C.I.M.E. Summer School devoted to arithmetic geometry was held in Cetraro, Italy in September 2007, and presented some of the most interesting new developments in arithmetic geometry. This book collects the lecture notes which were written up by the speakers. The main topics concern diophantine equations, local-global principles, diophantine approximation and its relations to Nevanlinna theory, and rationally connected varieties. The book is divided into three parts, corresponding to the courses given by J-L Colliot-Thélène Peter Swinnerton Dyer and Paul Vojta. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Algebraic geometry. 
650 0 |a Number theory. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a Algebraic Geometry. 
650 2 4 |a Algebra. 
700 1 |a Swinnerton-Dyer, Peter.  |e author. 
700 1 |a Vojta, Paul.  |e author. 
700 1 |a Corvaja, Pietro.  |e editor. 
700 1 |a Gasbarri, Carlo.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642159442 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2009 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-15945-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)