Scalable Uncertainty Management 4th International Conference, SUM 2010, Toulouse, France, September 27-29, 2010. Proceedings /

Managing uncertainty and inconsistency has been extensively explored in - ti?cial Intelligence over a number of years. Now with the advent of massive amounts of data and knowledge from distributed heterogeneous,and potentially con?icting, sources, there is interest in developing and applying formali...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Deshpande, Amol (Επιμελητής έκδοσης), Hunter, Anthony (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010.
Σειρά:Lecture Notes in Computer Science, 6379
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 05857nam a22005895i 4500
001 978-3-642-15951-0
003 DE-He213
005 20151204150033.0
007 cr nn 008mamaa
008 100917s2010 gw | s |||| 0|eng d
020 |a 9783642159510  |9 978-3-642-15951-0 
024 7 |a 10.1007/978-3-642-15951-0  |2 doi 
040 |d GrThAP 
050 4 |a Q334-342 
050 4 |a TJ210.2-211.495 
072 7 |a UYQ  |2 bicssc 
072 7 |a TJFM1  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Scalable Uncertainty Management  |h [electronic resource] :  |b 4th International Conference, SUM 2010, Toulouse, France, September 27-29, 2010. Proceedings /  |c edited by Amol Deshpande, Anthony Hunter. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2010. 
300 |a XI, 389 p. 79 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 6379 
505 0 |a Invited Talks -- Markov Chain Monte Carlo and Databases -- Answer Set Programming, the Solving Paradigm for Knowledge Representation and Reasoning -- Discussant Contributions -- Graphical and Logical-Based Representations of Uncertain Information in a Possibility Theory Framework -- Probabilistic Data: A Tiny Survey -- The Role of Epistemic Uncertainty in Risk Analysis -- Uncertainty in Clustering and Classification -- Information Fusion -- Use of the Domination Property for Interval Valued Digital Signal Processing -- Regular Contributions -- Managing Lineage and Uncertainty under a Data Exchange Setting -- A Formal Analysis of Logic-Based Argumentation Systems -- Handling Inconsistency with Preference-Based Argumentation -- A Possibility Theory-Oriented Discussion of Conceptual Pattern Structures -- DK-BKM: Decremental K Belief K-Modes Method -- On the Use of Fuzzy Cardinalities for Reducing Plethoric Answers to Fuzzy Queries -- From Bayesian Classifiers to Possibilistic Classifiers for Numerical Data -- Plausibility of Information Reported by Successive Sources -- Combining Semantic Web Search with the Power of Inductive Reasoning -- Evaluating Trust from Past Assessments with Imprecise Probabilities: Comparing Two Approaches -- Range-Consistent Answers of Aggregate Queries under Aggregate Constraints -- Characterization, Propagation and Analysis of Aleatory and Epistemic Uncertainty in the 2008 Performance Assessment for the Proposed Repository for High-Level Radioactive Waste at Yucca Mountain, Nevada -- Comparing Evidential Graphical Models for Imprecise Reliability -- Imprecise Bipolar Belief Measures Based on Partial Knowledge from Agent Dialogues -- Kriging with Ill-Known Variogram and Data -- Event Modelling and Reasoning with Uncertain Information for Distributed Sensor Networks -- Uncertainty in Decision Tree Classifiers -- Efficient Policy-Based Inconsistency Management in Relational Knowledge Bases -- Modelling Probabilistic Inference Networks and Classification in Probabilistic Datalog -- Handling Dirty Databases: From User Warning to Data Cleaning — Towards an Interactive Approach -- Disjunctive Fuzzy Logic Programs with Fuzzy Answer Set Semantics -- Cost-Based Query Answering in Action Probabilistic Logic Programs -- Clustering Fuzzy Data Using the Fuzzy EM Algorithm -- Combining Multi-resolution Evidence for Georeferencing Flickr Images -- A Structure-Based Similarity Spreading Approach for Ontology Matching -- Risk Modeling for Decision Support. 
520 |a Managing uncertainty and inconsistency has been extensively explored in - ti?cial Intelligence over a number of years. Now with the advent of massive amounts of data and knowledge from distributed heterogeneous,and potentially con?icting, sources, there is interest in developing and applying formalisms for uncertainty andinconsistency widelyin systems that need to better managethis data and knowledge. The annual International Conference on Scalable Uncertainty Management (SUM) has grown out of this wide-ranging interest in managing uncertainty and inconsistency in databases, the Web, the Semantic Web, and AI. It aims at bringing together all those interested in the management of large volumes of uncertainty and inconsistency, irrespective of whether they are in databases,the Web, the Semantic Web, or in AI, as well as in other areas such as information retrieval, risk analysis, and computer vision, where signi?cant computational - forts are needed. After a promising First International Conference on Scalable Uncertainty Management was held in Washington DC, USA in 2007, the c- ference series has been successfully held in Napoli, Italy, in 2008, and again in Washington DC, USA, in 2009. 
650 0 |a Computer science. 
650 0 |a Computer communication systems. 
650 0 |a Database management. 
650 0 |a Data mining. 
650 0 |a Information storage and retrieval. 
650 0 |a Artificial intelligence. 
650 1 4 |a Computer Science. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Computer Communication Networks. 
650 2 4 |a Data Mining and Knowledge Discovery. 
650 2 4 |a Information Systems Applications (incl. Internet). 
650 2 4 |a Information Storage and Retrieval. 
650 2 4 |a Database Management. 
700 1 |a Deshpande, Amol.  |e editor. 
700 1 |a Hunter, Anthony.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642159503 
830 0 |a Lecture Notes in Computer Science,  |x 0302-9743 ;  |v 6379 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-15951-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (Springer-11645)