Eta Products and Theta Series Identities

This monograph deals with products of Dedekind's eta function, with Hecke theta series on quadratic number fields, and with Eisenstein series. The author brings to the public the large number of identities that have been discovered over the past 20 years, the majority of which have not been pub...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Köhler, Günter (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Σειρά:Springer Monographs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03994nam a22004575i 4500
001 978-3-642-16152-0
003 DE-He213
005 20130725203813.0
007 cr nn 008mamaa
008 110115s2011 gw | s |||| 0|eng d
020 |a 9783642161520  |9 978-3-642-16152-0 
024 7 |a 10.1007/978-3-642-16152-0  |2 doi 
040 |d GrThAP 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
082 0 4 |a 512.7  |2 23 
100 1 |a Köhler, Günter.  |e author. 
245 1 0 |a Eta Products and Theta Series Identities  |h [electronic resource] /  |c by Günter Köhler. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a XXII, 622 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 1439-7382 
505 0 |a Introduction -- Part I: Theoretical background -- 1. Dedekind’s eta function and modular forms -- 2. Eta products -- 3. Eta products and lattice points in simplices -- 4. An algorithm for listing lattice points in a simplex -- 5. Theta series with Hecke character -- 6. Groups of coprime residues in quadratic fields -- Part II: Examples.-7. Ideal numbers for quadratic fields -- 8 Eta products of weight -- 9. Level 1: The full modular group -- 10. The prime level N = 2 -- 11. The prime level N = 3 -- 12. Prime levels N = p ≥ 5 -- 13. Level N = 4 -- 14. Levels N = p2 with primes p ≥ 3 -- 15 Levels N = p3 and p4 for primes p -- 16. Levels N = pq with primes 3 ≤ p < q -- 17. Weight 1 for levels N = 2p with primes p ≥ 5 -- 18. Level N = 6 -- 19. Weight 1 for prime power levels p5 and p6 -- 20. Levels p2q for distinct primes p = 2 and q -- 21. Levels 4p for the primes p = 23 and 19 -- 22. Levels 4p for p = 17 and 13 -- 23. Levels 4p for p = 11 and 7 -- 24. Weight 1 for level N = 20 -- 25. Cuspidal eta products of weight 1 for level 12 -- 26. Non-cuspidal eta products of weight 1 for level 12 -- 27. Weight 1 for Fricke groups Γ∗(q3p) -- 28. Weight 1 for Fricke groups Γ∗(2pq) -- 29. Weight 1 for Fricke groups Γ∗(p2q2) -- 30. Weight 1 for the Fricke groups Γ∗(60) and Γ∗(84) -- 31. Some more levels 4pq with odd primes p _= q -- References -- Directory of Characters -- Index of Notations -- Index. 
520 |a This monograph deals with products of Dedekind's eta function, with Hecke theta series on quadratic number fields, and with Eisenstein series. The author brings to the public the large number of identities that have been discovered over the past 20 years, the majority of which have not been published elsewhere. The book will be of interest to graduate students and scholars in the field of number theory and, in particular, modular forms. It is not an introductory text in this field. Nevertheless, some theoretical background material is presented that is important for understanding the examples in Part II. In Part I relevant definitions and essential theorems -- such as a complete proof of the structure theorems for coprime residue class groups in quadratic number fields that are not easily accessible in the literature -- are provided. Another example is a thorough description of an algorithm for listing all eta products of given weight and level, together with proofs of some results on the bijection between these eta products and lattice simplices. 
650 0 |a Mathematics. 
650 0 |a Number theory. 
650 0 |a Algebraic topology. 
650 1 4 |a Mathematics. 
650 2 4 |a Number Theory. 
650 2 4 |a Algebraic Topology. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642161513 
830 0 |a Springer Monographs in Mathematics,  |x 1439-7382 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-16152-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)