Evolutionary Statistical Procedures An Evolutionary Computation Approach to Statistical Procedures Designs and Applications /

This proposed text appears to be a good introduction to evolutionary computation for use in applied statistics research. The authors draw from a vast base of knowledge about the current literature in both the design of evolutionary algorithms and statistical techniques. Modern statistical research i...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Baragona, Roberto (Συγγραφέας), Battaglia, Francesco (Συγγραφέας), Poli, Irene (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Σειρά:Statistics and Computing,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03382nam a22005415i 4500
001 978-3-642-16218-3
003 DE-He213
005 20151125192922.0
007 cr nn 008mamaa
008 110103s2011 gw | s |||| 0|eng d
020 |a 9783642162183  |9 978-3-642-16218-3 
024 7 |a 10.1007/978-3-642-16218-3  |2 doi 
040 |d GrThAP 
050 4 |a QA276-280 
072 7 |a UFM  |2 bicssc 
072 7 |a COM077000  |2 bisacsh 
082 0 4 |a 519.5  |2 23 
100 1 |a Baragona, Roberto.  |e author. 
245 1 0 |a Evolutionary Statistical Procedures  |h [electronic resource] :  |b An Evolutionary Computation Approach to Statistical Procedures Designs and Applications /  |c by Roberto Baragona, Francesco Battaglia, Irene Poli. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a XII, 276 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Statistics and Computing,  |x 1431-8784 
505 0 |a Introduction -- Evolutionary Computation -- Evolving Regression Models -- Time Series Linear and Nonlinear Models -- Design of Experiments -- Outliers -- Cluster Analysis. 
520 |a This proposed text appears to be a good introduction to evolutionary computation for use in applied statistics research. The authors draw from a vast base of knowledge about the current literature in both the design of evolutionary algorithms and statistical techniques. Modern statistical research is on the threshold of solving increasingly complex problems in high dimensions, and the generalization of its methodology to parameters whose estimators do not follow mathematically simple distributions is underway. Many of these challenges involve optimizing functions for which analytic solutions are infeasible. Evolutionary algorithms represent a powerful and easily understood means of approximating the optimum value in a variety of settings. The proposed text seeks to guide readers through the crucial issues of optimization problems in statistical settings and the implementation of tailored methods (including both stand-alone evolutionary algorithms and hybrid crosses of these procedures with standard statistical algorithms like Metropolis-Hastings) in a variety of applications. This book would serve as an excellent reference work for statistical researchers at an advanced graduate level or beyond, particularly those with a strong background in computer science. 
650 0 |a Statistics. 
650 0 |a Laboratory medicine. 
650 0 |a Computer graphics. 
650 0 |a Algorithms. 
650 0 |a Social sciences. 
650 1 4 |a Statistics. 
650 2 4 |a Statistics and Computing/Statistics Programs. 
650 2 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics. 
650 2 4 |a Algorithms. 
650 2 4 |a Laboratory Medicine. 
650 2 4 |a Methodology of the Social Sciences. 
700 1 |a Battaglia, Francesco.  |e author. 
700 1 |a Poli, Irene.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642162176 
830 0 |a Statistics and Computing,  |x 1431-8784 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-16218-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)