Some Mathematical Models from Population Genetics École d'Été de Probabilités de Saint-Flour XXXIX-2009 /

This work reflects sixteen hours of lectures delivered by the author at the 2009 St Flour summer school in probability. It provides a rapid introduction to a range of mathematical models that have their origins in theoretical population genetics. The models fall into two classes: forwards in time mo...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Etheridge, Alison (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Σειρά:Lecture Notes in Mathematics, 2012
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02831nam a22005415i 4500
001 978-3-642-16632-7
003 DE-He213
005 20151204164416.0
007 cr nn 008mamaa
008 110104s2011 gw | s |||| 0|eng d
020 |a 9783642166327  |9 978-3-642-16632-7 
024 7 |a 10.1007/978-3-642-16632-7  |2 doi 
040 |d GrThAP 
050 4 |a QH323.5 
050 4 |a QH455 
072 7 |a PBW  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
082 0 4 |a 576.58  |2 23 
082 0 4 |a 577.88  |2 23 
100 1 |a Etheridge, Alison.  |e author. 
245 1 0 |a Some Mathematical Models from Population Genetics  |h [electronic resource] :  |b École d'Été de Probabilités de Saint-Flour XXXIX-2009 /  |c by Alison Etheridge. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a VIII, 119 p. 15 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2012 
520 |a This work reflects sixteen hours of lectures delivered by the author at the 2009 St Flour summer school in probability. It provides a rapid introduction to a range of mathematical models that have their origins in theoretical population genetics. The models fall into two classes: forwards in time models for the evolution of frequencies of different genetic types in a population; and backwards in time (coalescent) models that trace out the genealogical relationships between individuals in a sample from the population. Some, like the classical Wright-Fisher model, date right back to the origins of the subject. Others, like the multiple merger coalescents or the spatial Lambda-Fleming-Viot process are much more recent. All share a rich mathematical structure. Biological terms are explained, the models are carefully motivated and tools for their study are presented systematically. 
650 0 |a Mathematics. 
650 0 |a Partial differential equations. 
650 0 |a Mathematical models. 
650 0 |a Biomathematics. 
650 0 |a Statistics. 
650 1 4 |a Mathematics. 
650 2 4 |a Genetics and Population Dynamics. 
650 2 4 |a Mathematical and Computational Biology. 
650 2 4 |a Mathematical Modeling and Industrial Mathematics. 
650 2 4 |a Partial Differential Equations. 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642166310 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2012 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-16632-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)