Extremal Combinatorics With Applications in Computer Science /

This book is a concise, self-contained, up-to-date introduction to extremal combinatorics for nonspecialists. There is a strong emphasis on theorems with particularly elegant and informative proofs, they may be called gems of the theory. The author presents a wide spectrum of the most powerful combi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Jukna, Stasys (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Σειρά:Texts in Theoretical Computer Science. An EATCS Series,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04237nam a22005535i 4500
001 978-3-642-17364-6
003 DE-He213
005 20151204150853.0
007 cr nn 008mamaa
008 110831s2011 gw | s |||| 0|eng d
020 |a 9783642173646  |9 978-3-642-17364-6 
024 7 |a 10.1007/978-3-642-17364-6  |2 doi 
040 |d GrThAP 
050 4 |a QA75.5-76.95 
072 7 |a UY  |2 bicssc 
072 7 |a UYA  |2 bicssc 
072 7 |a COM014000  |2 bisacsh 
072 7 |a COM031000  |2 bisacsh 
082 0 4 |a 004.0151  |2 23 
100 1 |a Jukna, Stasys.  |e author. 
245 1 0 |a Extremal Combinatorics  |h [electronic resource] :  |b With Applications in Computer Science /  |c by Stasys Jukna. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a XXIV, 412 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Texts in Theoretical Computer Science. An EATCS Series,  |x 1862-4499 
505 0 |a Preface -- Prolog: What this Book Is About -- Notation -- Counting -- Advanced Counting -- Probabilistic Counting -- The Pigeonhole Principle -- Systems of Distinct Representatives -- Sunflowers -- Intersecting Families -- Chains and Antichains -- Blocking Sets and the Duality -- Density and Universality -- Witness Sets and Isolation -- Designs -- The Basic Method -- Orthogonality and Rank Arguments -- Eigenvalues and Graph Expansion -- The Polynomial Method -- Combinatorics of Codes -- Linearity of Expectation -- The Lovász Sieve -- The Deletion Method -- The Second Moment Method -- The Entropy Function -- Random Walks -- Derandomization -- Ramseyan Theorems for Numbers -- The Hales–Jewett Theorem -- Applications in Communications Complexity -- References -- Index. 
520 |a This book is a concise, self-contained, up-to-date introduction to extremal combinatorics for nonspecialists. There is a strong emphasis on theorems with particularly elegant and informative proofs, they may be called gems of the theory. The author presents a wide spectrum of the most powerful combinatorial tools together with impressive applications in computer science: methods of extremal set theory, the linear algebra method, the probabilistic method, and fragments of Ramsey theory. No special knowledge in combinatorics or computer science is assumed – the text is self-contained and the proofs can be enjoyed by undergraduate students in mathematics and computer science. Over 300 exercises of varying difficulty, and hints to their solution, complete the text. This second edition has been extended with substantial new material, and has been revised and updated throughout. It offers three new chapters on expander graphs and eigenvalues, the polynomial method and error-correcting codes. Most of the remaining chapters also include new material, such as the Kruskal—Katona theorem on shadows, the Lovász—Stein theorem on coverings, large cliques in dense graphs without induced 4-cycles, a new lower bounds argument for monotone formulas, Dvir's solution of the finite field Kakeya conjecture, Moser's algorithmic version of the Lovász Local Lemma, Schöning's algorithm for 3-SAT, the Szemerédi—Trotter theorem on the number of point-line incidences, surprising applications of expander graphs in extremal number theory, and some other new results. 
650 0 |a Computer science. 
650 0 |a Computers. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Computer mathematics. 
650 0 |a Number theory. 
650 0 |a Combinatorics. 
650 1 4 |a Computer Science. 
650 2 4 |a Theory of Computation. 
650 2 4 |a Number Theory. 
650 2 4 |a Discrete Mathematics in Computer Science. 
650 2 4 |a Combinatorics. 
650 2 4 |a Computational Mathematics and Numerical Analysis. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642173639 
830 0 |a Texts in Theoretical Computer Science. An EATCS Series,  |x 1862-4499 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-17364-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-SCS 
950 |a Computer Science (Springer-11645)