Modular Invariant Theory

This book covers the modular invariant theory of finite groups, the case when the characteristic of the field divides the order of the group. It explains a theory that is more complicated than the study of the classical non-modular case, and it describes many open questions. Largely self-contained,...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Campbell, H.E.A. Eddy (Συγγραφέας), Wehlau, David L. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Σειρά:Encyclopaedia of Mathematical Sciences, 139
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03222nam a22005055i 4500
001 978-3-642-17404-9
003 DE-He213
005 20151125193421.0
007 cr nn 008mamaa
008 110112s2011 gw | s |||| 0|eng d
020 |a 9783642174049  |9 978-3-642-17404-9 
024 7 |a 10.1007/978-3-642-17404-9  |2 doi 
040 |d GrThAP 
050 4 |a QA251.3 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002010  |2 bisacsh 
082 0 4 |a 512.44  |2 23 
100 1 |a Campbell, H.E.A. Eddy.  |e author. 
245 1 0 |a Modular Invariant Theory  |h [electronic resource] /  |c by H.E.A. Eddy Campbell, David L. Wehlau. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a XIV, 234 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Encyclopaedia of Mathematical Sciences,  |x 0938-0396 ;  |v 139 
505 0 |a 1 First Steps -- 2 Elements of Algebraic Geometry and Commutative Algebra -- 3 Applications of Commutative Algebra to Invariant Theory -- 4 Examples -- 5 Monomial Orderings and SAGBI Bases -- 6 Block Bases -- 7 The Cyclic Group Cp -- 8 Polynomial Invariant Rings -- 9 The Transfer -- 10 Invariant Rings via Localization -- 11 Rings of Invariants which are Hypersurfaces -- 12 Separating Invariants -- 13 Using SAGBI Bases to Compute Rings of Invariants -- 14 Ladders -- References -- Index. 
520 |a This book covers the modular invariant theory of finite groups, the case when the characteristic of the field divides the order of the group. It explains a theory that is more complicated than the study of the classical non-modular case, and it describes many open questions. Largely self-contained, the book develops the theory from its origins up to modern results. It explores many examples, illustrating the theory and its contrast with the better understood non-modular setting. It details techniques for the computation of invariants for many modular representations of finite groups, especially the case of the cyclic group of prime order. It includes detailed examples of many topics as well as a quick survey of the elements of algebraic geometry and commutative algebra as they apply to invariant theory. The book is aimed at both graduate students and researchers—an introduction to many important topics in modern algebra within a concrete setting for the former, an exploration of a fascinating subfield of algebraic geometry for the latter. 
650 0 |a Mathematics. 
650 0 |a Algebra. 
650 0 |a Algebraic geometry. 
650 0 |a Commutative algebra. 
650 0 |a Commutative rings. 
650 1 4 |a Mathematics. 
650 2 4 |a Commutative Rings and Algebras. 
650 2 4 |a Algebra. 
650 2 4 |a Algebraic Geometry. 
700 1 |a Wehlau, David L.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642174032 
830 0 |a Encyclopaedia of Mathematical Sciences,  |x 0938-0396 ;  |v 139 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-17404-9  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)