Random Perturbation of PDEs and Fluid Dynamic Models École d’Été de Probabilités de Saint-Flour XL – 2010 /

This volume deals with the random perturbation of PDEs which lack well-posedness, mainly because of their non-uniqueness, in some cases because of blow-up. The aim is to show that noise may restore uniqueness or prevent blow-up. This is not a general or easy-to-apply rule, and the theory presented i...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Flandoli, Franco (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Σειρά:Lecture Notes in Mathematics, 2015
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02475nam a22004695i 4500
001 978-3-642-18231-0
003 DE-He213
005 20151204152100.0
007 cr nn 008mamaa
008 110301s2011 gw | s |||| 0|eng d
020 |a 9783642182310  |9 978-3-642-18231-0 
024 7 |a 10.1007/978-3-642-18231-0  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Flandoli, Franco.  |e author. 
245 1 0 |a Random Perturbation of PDEs and Fluid Dynamic Models  |h [electronic resource] :  |b École d’Été de Probabilités de Saint-Flour XL – 2010 /  |c by Franco Flandoli. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a X, 182 p. 10 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2015 
505 0 |a 1. Introduction to Uniqueness and Blow-up -- 2. Regularization by Additive Noise -- 3. Dyadic Models -- 4. Transport Equation -- 5. Other Models. Uniqueness and Singularities. 
520 |a This volume deals with the random perturbation of PDEs which lack well-posedness, mainly because of their non-uniqueness, in some cases because of blow-up. The aim is to show that noise may restore uniqueness or prevent blow-up. This is not a general or easy-to-apply rule, and the theory presented in the book is in fact a series of examples with a few unifying ideas. The role of additive and bilinear multiplicative noise is described and a variety of examples are included, from abstract parabolic evolution equations with non-Lipschitz nonlinearities to particular fluid dynamic models, like the dyadic model, linear transport equations and motion of point vortices. 
650 0 |a Mathematics. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642182303 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2015 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-18231-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)