Vector Optimization with Infimum and Supremum

The theory of Vector Optimization is developed by a systematic usage of infimum and supremum. In order to get existence and appropriate properties of the infimum, the image space of the vector optimization problem is embedded into a larger space, which is a subset of the power set, in fact, the spac...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Löhne, Andreas (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Σειρά:Vector Optimization,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02516nam a22005535i 4500
001 978-3-642-18351-5
003 DE-He213
005 20151204172707.0
007 cr nn 008mamaa
008 110524s2011 gw | s |||| 0|eng d
020 |a 9783642183515  |9 978-3-642-18351-5 
024 7 |a 10.1007/978-3-642-18351-5  |2 doi 
040 |d GrThAP 
050 4 |a HD30.23 
072 7 |a KJT  |2 bicssc 
072 7 |a KJMD  |2 bicssc 
072 7 |a BUS049000  |2 bisacsh 
082 0 4 |a 658.40301  |2 23 
100 1 |a Löhne, Andreas.  |e author. 
245 1 0 |a Vector Optimization with Infimum and Supremum  |h [electronic resource] /  |c by Andreas Löhne. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a X, 206 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Vector Optimization,  |x 1867-8971 
520 |a The theory of Vector Optimization is developed by a systematic usage of infimum and supremum. In order to get existence and appropriate properties of the infimum, the image space of the vector optimization problem is embedded into a larger space, which is a subset of the power set, in fact, the space of self-infimal sets. Based on this idea we establish solution concepts, existence and duality results and algorithms for the linear case. The main advantage of this approach is the high degree of analogy to corresponding results of Scalar Optimization. The concepts and results are used to explain and to improve practically relevant algorithms for linear vector optimization problems. 
650 0 |a Business. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 0 |a Algebra. 
650 0 |a Ordered algebraic structures. 
650 0 |a Algorithms. 
650 0 |a Mathematical optimization. 
650 0 |a Management science. 
650 1 4 |a Business and Management. 
650 2 4 |a Operation Research/Decision Theory. 
650 2 4 |a Optimization. 
650 2 4 |a Order, Lattices, Ordered Algebraic Structures. 
650 2 4 |a Operations Research, Management Science. 
650 2 4 |a Algorithms. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642183508 
830 0 |a Vector Optimization,  |x 1867-8971 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-18351-5  |z Full Text via HEAL-Link 
912 |a ZDB-2-SBE 
950 |a Business and Economics (Springer-11643)