Eigenvalues, Embeddings and Generalised Trigonometric Functions

The main theme of the book is the study, from the standpoint of s-numbers, of integral operators of Hardy type and related Sobolev embeddings. In the theory of s-numbers the idea is to attach to every bounded linear map between Banach spaces a monotone decreasing sequence of non-negative numbers wit...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Lang, Jan (Συγγραφέας), Edmunds, David (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Σειρά:Lecture Notes in Mathematics, 2016
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03092nam a22005895i 4500
001 978-3-642-18429-1
003 DE-He213
005 20151123195422.0
007 cr nn 008mamaa
008 110317s2011 gw | s |||| 0|eng d
020 |a 9783642184291  |9 978-3-642-18429-1 
024 7 |a 10.1007/978-3-642-18429-1  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Lang, Jan.  |e author. 
245 1 0 |a Eigenvalues, Embeddings and Generalised Trigonometric Functions  |h [electronic resource] /  |c by Jan Lang, David Edmunds. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a XI, 220 p. 10 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2016 
505 0 |a 1 Basic material -- 2 Trigonometric generalisations -- 3 The Laplacian and some natural variants -- 4 Hardy operators -- 5 s-Numbers and generalised trigonometric functions -- 6 Estimates of s-numbers of weighted Hardy operators -- 7 More refined estimates -- 8 A non-linear integral system -- 9 Hardy operators on variable exponent spaces. 
520 |a The main theme of the book is the study, from the standpoint of s-numbers, of integral operators of Hardy type and related Sobolev embeddings. In the theory of s-numbers the idea is to attach to every bounded linear map between Banach spaces a monotone decreasing sequence of non-negative numbers with a view to the classification of operators according to the way in which these numbers approach a limit: approximation numbers provide an especially important example of such numbers. The asymptotic behavior of the s-numbers of Hardy operators acting between Lebesgue spaces is determined here in a wide variety of cases. The proof methods involve the geometry of Banach spaces and generalized trigonometric functions; there are connections with the theory of the p-Laplacian. 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Approximation theory. 
650 0 |a Functional analysis. 
650 0 |a Differential equations. 
650 0 |a Special functions. 
650 0 |a Mathematics  |x Study and teaching. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Approximations and Expansions. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Special Functions. 
650 2 4 |a Ordinary Differential Equations. 
650 2 4 |a Mathematics Education. 
700 1 |a Edmunds, David.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642182679 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2016 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-18429-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)