Kernel-based Data Fusion for Machine Learning Methods and Applications in Bioinformatics and Text Mining /
Data fusion problems arise frequently in many different fields. This book provides a specific introduction to data fusion problems using support vector machines. In the first part, this book begins with a brief survey of additive models and Rayleigh quotient objectives in machine learning, and then...
Κύριοι συγγραφείς: | , , , |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg,
2011.
|
Σειρά: | Studies in Computational Intelligence,
345 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- Introduction
- Rayleigh quotient-type problems in machine learning
- Ln-norm Multiple Kernel Learning and Least Squares Support VectorMachines
- Optimized data fusion for kernel k-means Clustering
- Multi-view text mining for disease gene prioritization and clustering
- Optimized data fusion for k-means Laplacian Clustering
- Weighted Multiple Kernel Canonical Correlation
- Cross-species candidate gene prioritization with MerKator
- Conclusion.