Kernel-based Data Fusion for Machine Learning Methods and Applications in Bioinformatics and Text Mining /

Data fusion problems arise frequently in many different fields.  This book provides a specific introduction to data fusion problems using support vector machines. In the first part, this book begins with a brief survey of additive models and Rayleigh quotient objectives in machine learning, and then...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Yu, Shi (Συγγραφέας), Tranchevent, Léon-Charles (Συγγραφέας), Moor, Bart De (Συγγραφέας), Moreau, Yves (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Σειρά:Studies in Computational Intelligence, 345
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  • Introduction
  • Rayleigh quotient-type problems in machine learning
  • Ln-norm Multiple Kernel Learning and Least Squares Support VectorMachines
  • Optimized data fusion for kernel k-means Clustering
  • Multi-view text mining for disease gene prioritization and clustering
  • Optimized data fusion for k-means Laplacian Clustering
  • Weighted Multiple Kernel Canonical Correlation
  • Cross-species candidate gene prioritization with MerKator
  • Conclusion.