Topological Complexity of Smooth Random Functions École d'Été de Probabilités de Saint-Flour XXXIX-2009 /

These notes, based on lectures delivered in Saint Flour, provide an easy introduction to the authors’ 2007 Springer monograph “Random Fields and Geometry.” While not as exhaustive as the full monograph, they are also less exhausting, while still covering the basic material, typically at a more intui...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Adler, Robert J. (Συγγραφέας), Taylor, Jonathan E. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011.
Σειρά:Lecture Notes in Mathematics, 2019
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02893nam a22004815i 4500
001 978-3-642-19580-8
003 DE-He213
005 20151204171725.0
007 cr nn 008mamaa
008 110516s2011 gw | s |||| 0|eng d
020 |a 9783642195808  |9 978-3-642-19580-8 
024 7 |a 10.1007/978-3-642-19580-8  |2 doi 
040 |d GrThAP 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
082 0 4 |a 516  |2 23 
100 1 |a Adler, Robert J.  |e author. 
245 1 0 |a Topological Complexity of Smooth Random Functions  |h [electronic resource] :  |b École d'Été de Probabilités de Saint-Flour XXXIX-2009 /  |c by Robert J. Adler, Jonathan E. Taylor. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2011. 
300 |a VIII, 122 p. 15 illus., 9 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2019 
505 0 |a 1 Introduction -- 2 Gaussian Processes -- 3 Some Geometry and Some Topology -- 4 The Gaussian Kinematic Formula -- 5 On Applications: Topological Inference -- 6 Algebraic Topology of Excursion Sets: A New Challenge. 
520 |a These notes, based on lectures delivered in Saint Flour, provide an easy introduction to the authors’ 2007 Springer monograph “Random Fields and Geometry.” While not as exhaustive as the full monograph, they are also less exhausting, while still covering the basic material, typically at a more intuitive and less technical level. They also cover some more recent material relating to random algebraic topology and statistical applications. The notes include an introduction to the general theory of Gaussian random fields, treating classical topics such as continuity and boundedness. This is followed by a quick review of geometry, both integral and Riemannian, with an emphasis on tube formulae, to provide the reader with the material needed to understand and use the Gaussian kinematic formula, the main result of the notes. This is followed by chapters on topological inference and random algebraic topology, both of which provide applications of the main results. 
650 0 |a Mathematics. 
650 0 |a Geometry. 
650 0 |a Statistics. 
650 1 4 |a Mathematics. 
650 2 4 |a Geometry. 
650 2 4 |a Statistical Theory and Methods. 
700 1 |a Taylor, Jonathan E.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642195792 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2019 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-19580-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)