Statistical Pronunciation Modeling for Non-Native Speech Processing

In this work, the authors present a fully statistical approach to model non--native speakers' pronunciation. Second-language speakers pronounce words in multiple different ways compared to the native speakers. Those deviations, may it be phoneme substitutions, deletions or insertions, can be mo...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Gruhn, Rainer E. (Συγγραφέας), Minker, Wolfgang (Συγγραφέας), Nakamura, Satoshi (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011.
Σειρά:Signals and Communication Technology,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02946nam a22005655i 4500
001 978-3-642-19586-0
003 DE-He213
005 20151030021541.0
007 cr nn 008mamaa
008 110701s2011 gw | s |||| 0|eng d
020 |a 9783642195860  |9 978-3-642-19586-0 
024 7 |a 10.1007/978-3-642-19586-0  |2 doi 
040 |d GrThAP 
050 4 |a TK5102.9 
050 4 |a TA1637-1638 
050 4 |a TK7882.S65 
072 7 |a TTBM  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a COM073000  |2 bisacsh 
082 0 4 |a 621.382  |2 23 
100 1 |a Gruhn, Rainer E.  |e author. 
245 1 0 |a Statistical Pronunciation Modeling for Non-Native Speech Processing  |h [electronic resource] /  |c by Rainer E. Gruhn, Wolfgang Minker, Satoshi Nakamura. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2011. 
300 |a X, 114 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Signals and Communication Technology,  |x 1860-4862 
505 0 |a Introduction -- Automatic Speech Recognition -- Properties of Non-native Speech -- Pronunciation Variation Modeling in the Literature -- Non-native Speech Database -- Handling Non-native Speech -- Pronunciation HMMs. 
520 |a In this work, the authors present a fully statistical approach to model non--native speakers' pronunciation. Second-language speakers pronounce words in multiple different ways compared to the native speakers. Those deviations, may it be phoneme substitutions, deletions or insertions, can be modelled automatically with the new method presented here. The methods is based on a discrete hidden Markov model as a word pronunciation model, initialized on a standard pronunciation dictionary. The implementation and functionality of the methodology has been proven and verified with a test set of non-native English in the regarding accent. The book is written for researchers with a professional interest in phonetics and automatic speech and speaker recognition. 
650 0 |a Engineering. 
650 0 |a Computational linguistics. 
650 0 |a Phonology. 
650 0 |a Statistics. 
650 1 4 |a Engineering. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Language Translation and Linguistics. 
650 2 4 |a Phonology. 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences. 
700 1 |a Minker, Wolfgang.  |e author. 
700 1 |a Nakamura, Satoshi.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642195853 
830 0 |a Signals and Communication Technology,  |x 1860-4862 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-19586-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)