Spherical Tube Hypersurfaces

We examine Levi non-degenerate tube hypersurfaces in complex linear space which are "spherical," that is, locally CR-equivalent to the real hyperquadric. Spherical hypersurfaces are characterized by the condition of the vanishing of the CR-curvature form, so such hypersurfaces are flat fro...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Isaev, Alexander (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Σειρά:Lecture Notes in Mathematics, 2020
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02595nam a22004335i 4500
001 978-3-642-19783-3
003 DE-He213
005 20151123193622.0
007 cr nn 008mamaa
008 110329s2011 gw | s |||| 0|eng d
020 |a 9783642197833  |9 978-3-642-19783-3 
024 7 |a 10.1007/978-3-642-19783-3  |2 doi 
040 |d GrThAP 
050 4 |a QA331.7 
072 7 |a PBKD  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515.94  |2 23 
100 1 |a Isaev, Alexander.  |e author. 
245 1 0 |a Spherical Tube Hypersurfaces  |h [electronic resource] /  |c by Alexander Isaev. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a XII, 230 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2020 
520 |a We examine Levi non-degenerate tube hypersurfaces in complex linear space which are "spherical," that is, locally CR-equivalent to the real hyperquadric. Spherical hypersurfaces are characterized by the condition of the vanishing of the CR-curvature form, so such hypersurfaces are flat from the CR-geometric viewpoint. On the other hand, such hypersurfaces are also of interest from the point of view of affine geometry. Thus our treatment of spherical tube hypersurfaces in this book is two-fold: CR-geometric and affine-geometric. As the book shows, spherical tube hypersurfaces possess remarkable properties. For example, every such hypersurface is real-analytic and extends to a closed real-analytic spherical tube hypersurface in complex space. One of our main goals is to provide an explicit affine classification of closed spherical tube hypersurfaces whenever possible. In this book we offer a comprehensive exposition of the theory of spherical tube hypersurfaces, starting with the idea proposed in the pioneering work by P. Yang (1982) and ending with the new approach put forward by G. Fels and W. Kaup (2009). 
650 0 |a Mathematics. 
650 0 |a Functions of complex variables. 
650 1 4 |a Mathematics. 
650 2 4 |a Several Complex Variables and Analytic Spaces. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642197826 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2020 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-19783-3  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)