Towards Intelligent Modeling: Statistical Approximation Theory

The main idea of statistical convergence is to demand convergence only for a majority of elements of a sequence. This method of convergence has been investigated in many fundamental areas of mathematics such as: measure theory, approximation theory, fuzzy logic theory, summability theory, and so on....

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Anastassiou, George A. (Συγγραφέας), Duman, Oktay (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Σειρά:Intelligent Systems Reference Library, 14
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
Πίνακας περιεχομένων:
  •  Introduction
  • Statistical Approximation by Bivariate Picard Singular Integral Operators
  • Uniform Approximation in Statistical Sense by Bivariate Gauss-Weierstrass Singular Integral Operators
  • Statistical Lp-Convergence of Bivariate Smooth Picard Singular Integral Operators
  • Statistical Lp-Approximation by Bivariate Gauss-Weierstrass Singular Integral Operators
  • A Baskakov-Type Generalization of Statistical Approximation Theory
  • Weighted Approximation in Statistical Sense to Derivatives of Functions
  • Statistical Approximation to Periodic Functions by a General Family of Linear Operators
  • Relaxing the Positivity Condition of Linear Operators in Statistical Korovkin Theory
  • Statistical Approximation Theory for Stochastic Processes
  • Statistical Approximation Theory for Multivariate Stochas tic Processes.