Self-Learning Speaker Identification A System for Enhanced Speech Recognition /

Current speech recognition systems suffer from variation of voice characteristics between speakers as they are usually based on speaker independent speech models. In order to resolve this issue, adaptation methods have been developed in many state-of-the-art systems. However, information acquired ov...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Herbig, Tobias (Συγγραφέας), Gerl, Franz (Συγγραφέας), Minker, Wolfgang (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Σειρά:Signals and Communication Technology,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02967nam a22005655i 4500
001 978-3-642-19899-1
003 DE-He213
005 20151103123550.0
007 cr nn 008mamaa
008 110713s2011 gw | s |||| 0|eng d
020 |a 9783642198991  |9 978-3-642-19899-1 
024 7 |a 10.1007/978-3-642-19899-1  |2 doi 
040 |d GrThAP 
050 4 |a TK5102.9 
050 4 |a TA1637-1638 
050 4 |a TK7882.S65 
072 7 |a TTBM  |2 bicssc 
072 7 |a UYS  |2 bicssc 
072 7 |a TEC008000  |2 bisacsh 
072 7 |a COM073000  |2 bisacsh 
082 0 4 |a 621.382  |2 23 
100 1 |a Herbig, Tobias.  |e author. 
245 1 0 |a Self-Learning Speaker Identification  |h [electronic resource] :  |b A System for Enhanced Speech Recognition /  |c by Tobias Herbig, Franz Gerl, Wolfgang Minker. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a XII, 172 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Signals and Communication Technology,  |x 1860-4862 
505 0 |a Introduction -- State of the Art -- Fundamentals -- Speech Production -- Front-End -- Speaker Change -- Speaker Identification.-Speaker Adaptation. 
520 |a Current speech recognition systems suffer from variation of voice characteristics between speakers as they are usually based on speaker independent speech models. In order to resolve this issue, adaptation methods have been developed in many state-of-the-art systems. However, information acquired over time is still lost whenever another speaker intermittently uses the recognition system. This work therefore develops an integrated approach for speech and speaker recognition in order to improve the self-learning opportunities of the system. A speaker adaptation scheme is introduced. It is suited for fast short-term and detailed long-term adaptation. These adaptation profiles are then used for an efficient speaker recognition system. The speaker identification enables the speaker adaptation to track different speakers which results in an optimal long-term adaptation. 
650 0 |a Engineering. 
650 0 |a User interfaces (Computer systems). 
650 0 |a Biometrics (Biology). 
650 0 |a Electrical engineering. 
650 1 4 |a Engineering. 
650 2 4 |a Signal, Image and Speech Processing. 
650 2 4 |a Biometrics. 
650 2 4 |a Communications Engineering, Networks. 
650 2 4 |a User Interfaces and Human Computer Interaction. 
700 1 |a Gerl, Franz.  |e author. 
700 1 |a Minker, Wolfgang.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642198984 
830 0 |a Signals and Communication Technology,  |x 1860-4862 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-19899-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)