Modeling Intention in Email Speech Acts, Information Leaks and Recommendation Models /

Everyday more than half of American adult internet users read or write email messages at least once. The prevalence of email has significantly impacted the working world, functioning as a great asset on many levels, yet at times, a costly liability. In an effort to improve various aspects of work-re...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Carvalho, Vitor R. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Σειρά:Studies in Computational Intelligence, 349
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 02678nam a22004695i 4500
001 978-3-642-19956-1
003 DE-He213
005 20151204180532.0
007 cr nn 008mamaa
008 110328s2011 gw | s |||| 0|eng d
020 |a 9783642199561  |9 978-3-642-19956-1 
024 7 |a 10.1007/978-3-642-19956-1  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Carvalho, Vitor R.  |e author. 
245 1 0 |a Modeling Intention in Email  |h [electronic resource] :  |b Speech Acts, Information Leaks and Recommendation Models /  |c by Vitor R. Carvalho. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a XII, 104 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 349 
505 0 |a Introduction -- Email “Speech Acts” -- Email Information Leaks -- Recommending Email Recipients.-  User Study -- Conclusions.-Email Act Labeling Guidelines -- User Study Supporting Material. 
520 |a Everyday more than half of American adult internet users read or write email messages at least once. The prevalence of email has significantly impacted the working world, functioning as a great asset on many levels, yet at times, a costly liability. In an effort to improve various aspects of work-related communication, this work applies sophisticated machine learning techniques to a large body of email data. Several effective models are proposed that can aid with the prioritization of incoming messages, help with coordination of shared tasks, improve tracking of deadlines, and prevent disastrous information leaks. Carvalho presents many data-driven techniques that can positively impact work-related email communication and offers robust models that may be successfully applied to future machine learning tasks. 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Information Systems Applications (incl. Internet). 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642199554 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 349 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-19956-1  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)