Classical Summation in Commutative and Noncommutative L<sub>p</sub>-Spaces

The aim of this research is to develop a systematic scheme that makes it possible to transform important parts of the by now classical theory of summation of general orthonormal series into a similar theory for series in noncommutative $L_p$-spaces constructed over a noncommutative measure space (a...

Full description

Bibliographic Details
Main Author: Defant, Andreas (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Series:Lecture Notes in Mathematics, 2021
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 02254nam a22005295i 4500
001 978-3-642-20438-8
003 DE-He213
005 20151204172711.0
007 cr nn 008mamaa
008 110620s2011 gw | s |||| 0|eng d
020 |a 9783642204388  |9 978-3-642-20438-8 
024 7 |a 10.1007/978-3-642-20438-8  |2 doi 
040 |d GrThAP 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
100 1 |a Defant, Andreas.  |e author. 
245 1 0 |a Classical Summation in Commutative and Noncommutative L<sub>p</sub>-Spaces  |h [electronic resource] /  |c by Andreas Defant. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a VIII, 171 p. 17 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2021 
505 0 |a 1 Introduction -- 2 Commutative Theory -- 3 Noncommutative Theory. 
520 |a The aim of this research is to develop a systematic scheme that makes it possible to transform important parts of the by now classical theory of summation of general orthonormal series into a similar theory for series in noncommutative $L_p$-spaces constructed over a noncommutative measure space (a von Neumann algebra of operators acting on a Hilbert space  together with a faithful normal state on this algebra). 
650 0 |a Mathematics. 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Fourier analysis. 
650 0 |a Functional analysis. 
650 0 |a Probabilities. 
650 1 4 |a Mathematics. 
650 2 4 |a Analysis. 
650 2 4 |a Functional Analysis. 
650 2 4 |a Fourier Analysis. 
650 2 4 |a Probability Theory and Stochastic Processes. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642204371 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2021 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-20438-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)