Bio-Inspired Self-Organizing Robotic Systems

Self-organizing approaches inspired from biological systems, such as social insects, genetic, molecular and cellular systems under morphogenesis, and human mental development, has enjoyed great success in advanced robotic systems that need to work in dynamic and changing environments.  Compared with...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Meng, Yan (Επιμελητής έκδοσης), Jin, Yaochu (Επιμελητής έκδοσης)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Σειρά:Studies in Computational Intelligence, 355
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03049nam a22005055i 4500
001 978-3-642-20760-0
003 DE-He213
005 20151125201302.0
007 cr nn 008mamaa
008 110511s2011 gw | s |||| 0|eng d
020 |a 9783642207600  |9 978-3-642-20760-0 
024 7 |a 10.1007/978-3-642-20760-0  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
245 1 0 |a Bio-Inspired Self-Organizing Robotic Systems  |h [electronic resource] /  |c edited by Yan Meng, Yaochu Jin. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a X, 275 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 355 
505 0 |a Part I:  Self-Organizing Swarm Robotic Systems   --   Part II: Self-Reconfigurable Modular Robots   --   Part III: Autonomous Mental Development in Robotic Systems   --   Part IV:  Special Applications   Part III: Autonomous Mental Development in Robotic Systems   --   Part IV:  Special Applications. 
520 |a Self-organizing approaches inspired from biological systems, such as social insects, genetic, molecular and cellular systems under morphogenesis, and human mental development, has enjoyed great success in advanced robotic systems that need to work in dynamic and changing environments.  Compared with classical control methods for robotic systems, the major advantages of bio-inspired self-organizing robotic systems include robustness, self-repair and self-healing in the presence of system failures and/or malfunctions, high adaptability to environmental changes, and autonomous self-organization and self-reconfiguration without a centralized control. “Bio-inspired Self-organizing Robotic Systems” provides a valuable reference for scientists, practitioners and research students working on developing control algorithms for self-organizing engineered collective systems, such as swarm robotic systems, self-reconfigurable modular robots, smart material based robotic devices, unmanned aerial vehicles, and satellite constellations.  . 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Computational intelligence. 
650 0 |a Robotics. 
650 0 |a Automation. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Robotics and Automation. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 |a Meng, Yan.  |e editor. 
700 1 |a Jin, Yaochu.  |e editor. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642207594 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 355 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-20760-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)