Dynamic Response of Pre-Stressed Spatially Curved Thin-Walled Beams of Open Profile

This short book analyses the dynamic stability with respect to small perturbations, as well as the local damage of geometrically nonlinear elastic, spatially curved, open section beams with axial precompression. Transient waves, which are the surfaces of strong discontinuity and wherein the stress a...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Rossikhin, Yury A. (Συγγραφέας), Shitikova, Marina V. (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Σειρά:SpringerBriefs in Applied Sciences and Technology,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03248nam a22005415i 4500
001 978-3-642-20969-7
003 DE-He213
005 20151204181012.0
007 cr nn 008mamaa
008 110719s2011 gw | s |||| 0|eng d
020 |a 9783642209697  |9 978-3-642-20969-7 
024 7 |a 10.1007/978-3-642-20969-7  |2 doi 
040 |d GrThAP 
050 4 |a TA405-409.3 
050 4 |a QA808.2 
072 7 |a TG  |2 bicssc 
072 7 |a TEC009070  |2 bisacsh 
072 7 |a TEC021000  |2 bisacsh 
082 0 4 |a 620.1  |2 23 
100 1 |a Rossikhin, Yury A.  |e author. 
245 1 0 |a Dynamic Response of Pre-Stressed Spatially Curved Thin-Walled Beams of Open Profile  |h [electronic resource] /  |c by Yury A. Rossikhin, Marina V. Shitikova. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a VIII, 86 p. 11 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Applied Sciences and Technology,  |x 2191-530X 
505 0 |a Introduction -- Problem Formulation and Governing Equations -- Impact Response of a Thin-walled Beam of Open Profile -- Conclusion -- Appendix. 
520 |a This short book analyses the dynamic stability with respect to small perturbations, as well as the local damage of geometrically nonlinear elastic, spatially curved, open section beams with axial precompression. Transient waves, which are the surfaces of strong discontinuity and wherein the stress and strain fields experience discontinuities, are used as small perturbations; in so doing the discontinuities are considered to be of small magnitude. Such waves are initiated during low-velocity impacts upon thin-walled beams. The theory of discontinuities and the method of ray expansions which allow one to find the desired fields behind the fronts of the transient waves in terms of discontinuities in time-derivatives of the values to be found, are used as the methods of solution for short-time dynamic processes. The example of using the ray expansions for analyzing the impact response of spatially curved thin-walled beams of open profile is demonstrated by solving the problem about the normal impact of an elastic hemispherical-nosed rod upon an elastic arch representing itself a channel-beam curved along an arc of the circumference. The influence of the initial stresses on the dynamic fields has been investigated. 
650 0 |a Engineering. 
650 0 |a Computer mathematics. 
650 0 |a Mechanics. 
650 0 |a Continuum mechanics. 
650 0 |a Civil engineering. 
650 1 4 |a Engineering. 
650 2 4 |a Continuum Mechanics and Mechanics of Materials. 
650 2 4 |a Computational Science and Engineering. 
650 2 4 |a Mechanics. 
650 2 4 |a Civil Engineering. 
700 1 |a Shitikova, Marina V.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642209680 
830 0 |a SpringerBriefs in Applied Sciences and Technology,  |x 2191-530X 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-20969-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)