Foundations of Incidence Geometry Projective and Polar Spaces /

Incidence geometry is a central part of modern mathematics that has an impressive tradition. The main topics of incidence geometry are projective and affine geometry and, in more recent times, the theory of buildings and polar spaces. Embedded into the modern view of diagram geometry, projective and...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Ueberberg, Johannes (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Σειρά:Springer Monographs in Mathematics,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03535nam a22004335i 4500
001 978-3-642-20972-7
003 DE-He213
005 20131026222021.0
007 cr nn 008mamaa
008 110824s2011 gw | s |||| 0|eng d
020 |a 9783642209727  |9 978-3-642-20972-7 
024 7 |a 10.1007/978-3-642-20972-7  |2 doi 
040 |d GrThAP 
050 4 |a QA440-699 
072 7 |a PBM  |2 bicssc 
072 7 |a MAT012000  |2 bisacsh 
082 0 4 |a 516  |2 23 
100 1 |a Ueberberg, Johannes.  |e author. 
245 1 0 |a Foundations of Incidence Geometry  |h [electronic resource] :  |b Projective and Polar Spaces /  |c by Johannes Ueberberg. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a XII, 248 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Monographs in Mathematics,  |x 1439-7382 
505 0 |a I Projective and Affine Geometries -- 1. Introduction -- 2. Geometries and Pregeometries -- 3. Projective and Affine Planes -- 4. Projective Spaces -- 5. Affine Spaces -- 6. A Characterization of Affine Spaces -- 7. Residues and Diagrams -- 8. Finite geometries -- II Isomorphisms and Collineations -- 1. Introduction -- 2. Morphisms -- 3. Projections -- 4. Collineations of projective and affine spaces -- 5. Central Collineations -- 6. The Theorem of Desargues -- III Projective Geometry over a Vector Space -- 1. Introduction -- 2. The Projective Space P(V) -- 3. Homogeneous Coordinates of Projective Spaces -- 4. Automorphisms of P(V) -- 5. The Affine Space AG(W) -- 6. Automorphisms of A(W) -- 7. The First Fundamental Theorem -- 8. The Second Fundamental Theorem -- IV Polar Spaces and Polarities -- 1. Introduction -- 2. The Theorem of Buekenhout-Shult -- 3. The diagram of a polar space -- 4. Polarities -- 5. Sesquilinear Forms -- 6. Pseudo-quadrics -- 7. The Kleinian Polar Space -- 8. The Theorem of Buekenhout and Parmentier -- V Quadrics and Quadratic Sets -- 1. Introduction -- 2. Quadratic Sets -- 3. Quadrics -- 4. Quadratic Sets in PG(3, K) -- 5. Perspective Quadratic Sets -- 6. Classification of the Quadratic Sets -- 7. The Kleinian Quadric -- 8. The Theorem of Segre -- 9. Further Reading -- References -- Index. 
520 |a Incidence geometry is a central part of modern mathematics that has an impressive tradition. The main topics of incidence geometry are projective and affine geometry and, in more recent times, the theory of buildings and polar spaces. Embedded into the modern view of diagram geometry, projective and affine geometry including the fundamental theorems, polar geometry including the Theorem of Buekenhout-Shult and the classification of quadratic sets are presented in this volume. Incidence geometry is developed along the lines of the fascinating work of Jacques Tits and Francis Buekenhout. The book is a clear and comprehensible introduction into a wonderful piece of mathematics. More than 200 figures make even complicated proofs accessible to the reader. 
650 0 |a Mathematics. 
650 0 |a Geometry. 
650 1 4 |a Mathematics. 
650 2 4 |a Geometry. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642209710 
830 0 |a Springer Monographs in Mathematics,  |x 1439-7382 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-20972-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)