Combinatorial Machine Learning A Rough Set Approach /

Decision trees and decision rule systems are widely used in different applications as algorithms for problem solving, as predictors, and as a way for knowledge representation. Reducts play key role in the problem of attribute (feature) selection. The aims of this book are (i) the consideration of th...

Full description

Bibliographic Details
Main Authors: Moshkov, Mikhail (Author), Zielosko, Beata (Author)
Corporate Author: SpringerLink (Online service)
Format: Electronic eBook
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Series:Studies in Computational Intelligence, 360
Subjects:
Online Access:Full Text via HEAL-Link
LEADER 02742nam a22004575i 4500
001 978-3-642-20995-6
003 DE-He213
005 20151204183900.0
007 cr nn 008mamaa
008 110713s2011 gw | s |||| 0|eng d
020 |a 9783642209956  |9 978-3-642-20995-6 
024 7 |a 10.1007/978-3-642-20995-6  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Moshkov, Mikhail.  |e author. 
245 1 0 |a Combinatorial Machine Learning  |h [electronic resource] :  |b A Rough Set Approach /  |c by Mikhail Moshkov, Beata Zielosko. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a XIV, 182 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 360 
520 |a Decision trees and decision rule systems are widely used in different applications as algorithms for problem solving, as predictors, and as a way for knowledge representation. Reducts play key role in the problem of attribute (feature) selection. The aims of this book are (i) the consideration of the sets of decision trees, rules and reducts; (ii) study of relationships among these objects; (iii) design of algorithms for construction of trees, rules and reducts; and (iv) obtaining bounds on their complexity. Applications for supervised machine learning, discrete optimization, analysis of acyclic programs, fault diagnosis, and pattern recognition are considered also. This is a mixture of research monograph and lecture notes. It contains many unpublished results. However, proofs are carefully selected to be understandable for students. The results considered in this book can be useful for researchers in machine learning, data mining and knowledge discovery, especially for those who are working in rough set theory, test theory and logical analysis of data. The book can be used in the creation of courses for graduate students. 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
700 1 |a Zielosko, Beata.  |e author. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642209949 
830 0 |a Studies in Computational Intelligence,  |x 1860-949X ;  |v 360 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-20995-6  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)