p-Adic Lie Groups

Manifolds over complete nonarchimedean fields together with notions like tangent spaces and vector fields form a convenient geometric language to express the basic formalism of p-adic analysis. The volume starts with a self-contained and detailed introduction to this language. This includes the disc...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Schneider, Peter (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Σειρά:Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics, 344
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 04090nam a22005175i 4500
001 978-3-642-21147-8
003 DE-He213
005 20151121052048.0
007 cr nn 008mamaa
008 110610s2011 gw | s |||| 0|eng d
020 |a 9783642211478  |9 978-3-642-21147-8 
024 7 |a 10.1007/978-3-642-21147-8  |2 doi 
040 |d GrThAP 
050 4 |a QA252.3 
050 4 |a QA387 
072 7 |a PBG  |2 bicssc 
072 7 |a MAT014000  |2 bisacsh 
072 7 |a MAT038000  |2 bisacsh 
082 0 4 |a 512.55  |2 23 
082 0 4 |a 512.482  |2 23 
100 1 |a Schneider, Peter.  |e author. 
245 1 0 |a p-Adic Lie Groups  |h [electronic resource] /  |c by Peter Schneider. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a XII, 256 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,  |x 0072-7830 ;  |v 344 
505 0 |a Introduction -- Part A: p-Adic Analysis and Lie Groups -- I.Foundations -- I.1.Ultrametric Spaces -- I.2.Nonarchimedean Fields -- I.3.Convergent Series -- I.4.Differentiability -- I.5.Power Series -- I.6.Locally Analytic Functions.-  II.Manifolds -- II.7.Charts and Atlases -- II.8.Manifolds -- II.9.The Tangent Space -- II.10.The Topological Vector Space C^an(M,E), part 1 -- II.11 Locally Convex K-Vector Spaces -- II.12 The Topological Vector Space C^an(M,E), part 2 -- III.Lie Groups -- III.13.Definitions and Foundations -- III.14.The Universal Enveloping Algebra -- III.15.The Concept of Free Algebras -- III.16.The Campbell-Hausdorff Formula -- III.17.The Convergence of the Hausdorff Series -- III.18.Formal Group Laws -- Part B:The Algebraic Theory of p-Adic Lie Groups -- IV.Preliminaries -- IV.19.Completed Group Rings -- IV.20.The Example of the Group Z^d_p -- IV.21.Continuous Distributions -- IV.22.Appendix: Pseudocompact Rings -- V.p-Valued Pro-p-Groups -- V.23.p-Valuations -- V.24.The free Group on two Generators -- V.25.The Operator P -- V.26.Finite Rank Pro-p-Groups -- V.27.Compact p-Adic Lie Groups -- VI.Completed Group Rings of p-Valued Groups -- VI.28.The Ring Filtration -- VI.29.Analyticity -- VI.30.Saturation -- VII.The Lie Algebra -- VII.31.A Normed Lie Algebra -- VII.32.The Hausdorff Series -- VII.33.Rational p-Valuations and Applications -- VII.34.Coordinates of the First and of the Second Kind -- References -- Index. 
520 |a Manifolds over complete nonarchimedean fields together with notions like tangent spaces and vector fields form a convenient geometric language to express the basic formalism of p-adic analysis. The volume starts with a self-contained and detailed introduction to this language. This includes the discussion of spaces of locally analytic functions as topological vector spaces, important for applications in representation theory. The author then sets up the analytic foundations of the theory of p-adic Lie groups and develops the relation between p-adic Lie groups and their Lie algebras. The second part of the book contains, for the first time in a textbook, a detailed exposition of Lazard's algebraic approach to compact p-adic Lie groups, via his notion of a p-valuation, together with its application to the structure of completed group rings. 
650 0 |a Mathematics. 
650 0 |a Associative rings. 
650 0 |a Rings (Algebra). 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 1 4 |a Mathematics. 
650 2 4 |a Topological Groups, Lie Groups. 
650 2 4 |a Associative Rings and Algebras. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642211461 
830 0 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,  |x 0072-7830 ;  |v 344 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-21147-8  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)