Disorder and Critical Phenomena Through Basic Probability Models École d’Été de Probabilités de Saint-Flour XL – 2010 /

Understanding the effect of disorder on critical phenomena is a central issue in statistical mechanics. In probabilistic terms: what happens if we perturb a system exhibiting a phase transition by introducing a random environment? The physics community has approached this very broad question by aimi...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Giacomin, Giambattista (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Σειρά:Lecture Notes in Mathematics, 2025
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03378nam a22005655i 4500
001 978-3-642-21156-0
003 DE-He213
005 20151204161939.0
007 cr nn 008mamaa
008 110714s2011 gw | s |||| 0|eng d
020 |a 9783642211560  |9 978-3-642-21156-0 
024 7 |a 10.1007/978-3-642-21156-0  |2 doi 
040 |d GrThAP 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a PBWL  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
082 0 4 |a 519.2  |2 23 
100 1 |a Giacomin, Giambattista.  |e author. 
245 1 0 |a Disorder and Critical Phenomena Through Basic Probability Models  |h [electronic resource] :  |b École d’Été de Probabilités de Saint-Flour XL – 2010 /  |c by Giambattista Giacomin. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a XI, 130 p. 12 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2025 
505 0 |a 1 Introduction -- 2 Homogeneous pinning systems: a class of exactly solved models -- 3 Introduction to disordered pinning models -- 4 Irrelevant disorder estimates -- 5 Relevant disorder estimates: the smoothing phenomenon -- 6 Critical point shift: the fractional moment method -- 7 The coarse graining procedure -- 8 Path properties. 
520 |a Understanding the effect of disorder on critical phenomena is a central issue in statistical mechanics. In probabilistic terms: what happens if we perturb a system exhibiting a phase transition by introducing a random environment? The physics community has approached this very broad question by aiming at general criteria that tell whether or not the addition of disorder changes the critical properties of a model: some of the predictions are truly striking and mathematically challenging. We approach this domain of ideas by focusing on a specific class of models, the "pinning models," for which a series of recent mathematical works has essentially put all the main predictions of the physics community on firm footing; in some cases, mathematicians have even gone beyond, settling a number of controversial issues. But the purpose of these notes, beyond treating the pinning models in full detail, is also to convey the gist, or at least the flavor, of the "overall picture," which is, in many respects, unfamiliar territory for mathematicians. 
650 0 |a Mathematics. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Probabilities. 
650 0 |a Physics. 
650 0 |a Statistical physics. 
650 0 |a Dynamical systems. 
650 1 4 |a Mathematics. 
650 2 4 |a Probability Theory and Stochastic Processes. 
650 2 4 |a Applications of Mathematics. 
650 2 4 |a Statistical Physics, Dynamical Systems and Complexity. 
650 2 4 |a Mathematical Methods in Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642211553 
830 0 |a Lecture Notes in Mathematics,  |x 0075-8434 ;  |v 2025 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-21156-0  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
912 |a ZDB-2-LNM 
950 |a Mathematics and Statistics (Springer-11649)