Disorder and Critical Phenomena Through Basic Probability Models École d’Été de Probabilités de Saint-Flour XL – 2010 /
Understanding the effect of disorder on critical phenomena is a central issue in statistical mechanics. In probabilistic terms: what happens if we perturb a system exhibiting a phase transition by introducing a random environment? The physics community has approached this very broad question by aimi...
Κύριος συγγραφέας: | |
---|---|
Συγγραφή απο Οργανισμό/Αρχή: | |
Μορφή: | Ηλεκτρονική πηγή Ηλ. βιβλίο |
Γλώσσα: | English |
Έκδοση: |
Berlin, Heidelberg :
Springer Berlin Heidelberg,
2011.
|
Σειρά: | Lecture Notes in Mathematics,
2025 |
Θέματα: | |
Διαθέσιμο Online: | Full Text via HEAL-Link |
Πίνακας περιεχομένων:
- 1 Introduction
- 2 Homogeneous pinning systems: a class of exactly solved models
- 3 Introduction to disordered pinning models
- 4 Irrelevant disorder estimates
- 5 Relevant disorder estimates: the smoothing phenomenon
- 6 Critical point shift: the fractional moment method
- 7 The coarse graining procedure
- 8 Path properties.