From Curve Fitting to Machine Learning An Illustrative Guide to Scientific Data Analysis and Computational Intelligence /

The analysis of experimental data is at heart of science from its beginnings. But it was the advent of digital computers that allowed the execution of highly non-linear and increasingly complex data analysis procedures - methods that were completely unfeasible before. Non-linear curve fitting, clust...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Zielesny, Achim (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Σειρά:Intelligent Systems Reference Library, 18
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03662nam a22004935i 4500
001 978-3-642-21280-2
003 DE-He213
005 20151125212509.0
007 cr nn 008mamaa
008 110725s2011 gw | s |||| 0|eng d
020 |a 9783642212802  |9 978-3-642-21280-2 
024 7 |a 10.1007/978-3-642-21280-2  |2 doi 
040 |d GrThAP 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
082 0 4 |a 006.3  |2 23 
100 1 |a Zielesny, Achim.  |e author. 
245 1 0 |a From Curve Fitting to Machine Learning  |h [electronic resource] :  |b An Illustrative Guide to Scientific Data Analysis and Computational Intelligence /  |c by Achim Zielesny. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a XV, 465 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Intelligent Systems Reference Library,  |x 1868-4394 ;  |v 18 
505 0 |a Introduction -- Curve Fitting -- Clustering -- Machine Learning -- Discussion -- CIP - Computational Intelligence Packages. 
520 |a The analysis of experimental data is at heart of science from its beginnings. But it was the advent of digital computers that allowed the execution of highly non-linear and increasingly complex data analysis procedures - methods that were completely unfeasible before. Non-linear curve fitting, clustering and machine learning belong to these modern techniques which are a further step towards computational intelligence. The goal of this book is to provide an interactive and illustrative guide to these topics. It concentrates on the road from two dimensional curve fitting to multidimensional clustering and machine learning with neural networks or support vector machines. Along the way topics like mathematical optimization or evolutionary algorithms are touched. All concepts and ideas are outlined in a clear cut manner with graphically depicted plausibility arguments and a little elementary mathematics. The major topics are extensively outlined with exploratory examples and applications. The primary goal is to be as illustrative as possible without hiding problems and pitfalls but to address them. The character of an illustrative cookbook is complemented with specific sections that address more fundamental questions like the relation between machine learning and human intelligence All topics are completely demonstrated with the aid of the commercial computing platform Mathematica and the Computational Intelligence Packages (CIP), a high-level function library developed with Mathematica's programming language on top of Mathematica's algorithms. CIP is open-source so the detailed code of every method is freely accessible. All examples and applications shown throughout the book may be used and customized by the reader without any restrictions. 
650 0 |a Engineering. 
650 0 |a Artificial intelligence. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Computational intelligence. 
650 1 4 |a Engineering. 
650 2 4 |a Computational Intelligence. 
650 2 4 |a Artificial Intelligence (incl. Robotics). 
650 2 4 |a Appl.Mathematics/Computational Methods of Engineering. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642212796 
830 0 |a Intelligent Systems Reference Library,  |x 1868-4394 ;  |v 18 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-21280-2  |z Full Text via HEAL-Link 
912 |a ZDB-2-ENG 
950 |a Engineering (Springer-11647)