Riemannian Geometry and Geometric Analysis

This established reference work continues to lead its readers to some of the hottest topics of contemporary mathematical research. The previous edition already introduced and explained the ideas of the parabolic methods that had found a spectacular success in the work of Perelman at the examples of...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριος συγγραφέας: Jost, Jürgen (Συγγραφέας)
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Μορφή: Ηλεκτρονική πηγή Ηλ. βιβλίο
Γλώσσα:English
Έκδοση: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011.
Σειρά:Universitext,
Θέματα:
Διαθέσιμο Online:Full Text via HEAL-Link
LEADER 03375nam a22004575i 4500
001 978-3-642-21298-7
003 DE-He213
005 20151125022201.0
007 cr nn 008mamaa
008 110726s2011 gw | s |||| 0|eng d
020 |a 9783642212987  |9 978-3-642-21298-7 
024 7 |a 10.1007/978-3-642-21298-7  |2 doi 
040 |d GrThAP 
050 4 |a QA641-670 
072 7 |a PBMP  |2 bicssc 
072 7 |a MAT012030  |2 bisacsh 
082 0 4 |a 516.36  |2 23 
100 1 |a Jost, Jürgen.  |e author. 
245 1 0 |a Riemannian Geometry and Geometric Analysis  |h [electronic resource] /  |c by Jürgen Jost. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg,  |c 2011. 
300 |a XIII, 611 p. 16 illus., 4 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Universitext,  |x 0172-5939 
505 0 |a 1. Riemannian Manifolds -- 2. Lie Groups and Vector Bundles -- 3. The Laplace Operator and Harmonic Differential Forms -- 4. Connections and Curvature -- 5. Geodesics and Jacobi Fields -- 6. Symmetric Spaces and K¨ahler Manifolds -- 7. Morse Theory and Floer Homology -- 8. Harmonic Maps between Riemannian Manifolds -- 9. Harmonic Maps from Riemann Surfaces -- 10. Variational Problems from Quantum Field Theory -- A. Linear Elliptic Partial Differential Equations -- A.1 Sobolev Spaces -- A.2 Linear Elliptic Equations -- A.3 Linear Parabolic Equations -- B. Fundamental Groups and Covering Spaces -- Bibliography -- Index. 
520 |a This established reference work continues to lead its readers to some of the hottest topics of contemporary mathematical research. The previous edition already introduced and explained the ideas of the parabolic methods that had found a spectacular success in the work of Perelman at the examples of closed geodesics and harmonic forms. It also discussed further examples of geometric variational problems from quantum field theory, another source of profound new ideas and methods in geometry. The 6th edition includes a systematic treatment of eigenvalues of Riemannian manifolds and several other additions. Also, the entire material has been reorganized in order to improve the coherence of the book. From the reviews: "This book provides a very readable introduction to Riemannian geometry and geometric analysis. ... With the vast development of the mathematical subject of geometric analysis, the present textbook is most welcome." Mathematical Reviews "...the material ... is self-contained. Each chapter ends with a set of exercises. Most of the paragraphs have a section ‘Perspectives’, written with the aim to place the material in a broader context and explain further results and directions." Zentralblatt MATH  . 
650 0 |a Mathematics. 
650 0 |a Differential geometry. 
650 0 |a Physics. 
650 1 4 |a Mathematics. 
650 2 4 |a Differential Geometry. 
650 2 4 |a Theoretical, Mathematical and Computational Physics. 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer eBooks 
776 0 8 |i Printed edition:  |z 9783642212970 
830 0 |a Universitext,  |x 0172-5939 
856 4 0 |u http://dx.doi.org/10.1007/978-3-642-21298-7  |z Full Text via HEAL-Link 
912 |a ZDB-2-SMA 
950 |a Mathematics and Statistics (Springer-11649)